Extending Qualitative Reconstruction Methods to Biharmonic Wave Scattering

J N I V E R S I T Y_@

<u>General Ozochiawaeze¹</u>, Isaac Harris¹, Peijun Li² ¹Purdue University ²Chinese Academy of Sciences Email: oozochia@purdue.edu, harri814@purdue.edu, lipeijun@lsec.cc.ac.cn

Introduction	Linear Sampling Method (LSM)
We study the inverse shape problem of reconstructing	Goal: Determine whether a sampling point $z \in \mathbb{R}^2$ lies inside the unknown cavity $D \subset \mathbb{R}^2$.
governed by the biharmonic wave operator. We adapt	LSM Equation:
two established techniques to this setting: the Lin-	$\mathcal{F}g_z = G^{\infty}_{\kappa}(\cdot, z), (\mathcal{F}g_z)(\hat{x}) \coloneqq \int_{\mathbb{S}^1} u^{\infty}(\hat{x}, d) g_z(d) ds(d)$
multistatic data to probe the interior of scatterers,	Operator Factorization:
and the Extended Sampling Method (ESM) , a recently developed approach designed for limited-	$\mathcal{F} = \mathcal{G} \circ (-\mathcal{H}), z \in D \iff e^{i\kappa \hat{x} \cdot z} \in \operatorname{Range}(\mathcal{G})$
aperture data.	Where:
Problem Setup	$\mathcal{H}g_z \coloneqq (v_{g_z}, \partial_{\nu} v_{g_z})^{\top}, v_g(x) \coloneqq \int_{\mathbb{S}^1} e^{i\kappa x \cdot d} g(d) ds(d), \text{ and } \mathcal{G}(h_1, h_2) = w^{\infty},$

We study flexural wave scattering from a clamped cavity $D \subset \mathbb{R}^2$ with smooth boundary ∂D . Governing PDE:

 $\Delta^2 u^s - k^4 u^s = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D}$

Boundary conditions (clamped):

 $u^{s} = -u^{i}, \quad \partial_{\nu}u^{s} = -\partial_{\nu}u^{i} \quad \text{on } \partial D,$

where the incident field is the plane wave $u^{i}(x) =$ $e^{ikx \cdot d}$.

Radiation condition:

$$\lim_{n \to \infty} \sqrt{r} \left(\partial_r u^s - iku^s \right) = 0, \quad r = |x|.$$

Decompose the scattered field:

$$u^{s} = u^{s}_{H} + u^{s}_{M}, \quad \begin{cases} \Delta u^{s}_{H} + k^{2} u^{s}_{H} = 0, \\ \Delta u^{s}_{M} - k^{2} u^{s}_{M} = 0, \end{cases} \quad \mathbb{R}^{2} \setminus \overline{D}.$$

Coupled boundary conditions:

 $u_H^s + u_M^s = -u^i, \quad \partial_\nu u_H^s + \partial_\nu u_M^s = -\partial_\nu u^i \text{ on } \partial D.$

with $w \in H^2_{loc}(\mathbb{R}^2 \setminus \overline{D})$ the unique weak solution to the generalized biharmonic scattering problem

 $\begin{cases} (\Delta^2 - \kappa^4)w = 0 & \text{in } \mathbb{R}^2 \setminus \overline{D}, \\ (w, \partial_\nu w) = (h_1, h_2) & \text{on } \partial D, \\ \lim_{r \to \infty} \sqrt{r}(\partial_r w - i\kappa w) = 0, \quad r = |x|. \end{cases}$

- \mathcal{F} : Far-field operator mapping weights g_z to superpositions of measured data.
- $G_{\kappa}^{\infty}(\cdot, z)$: Far-field pattern of a biharmonic point source at z.

Sampling Principle:

- Feasible (regularized) solutions g_z exist with small norm if and only if $z \in D$.
- Indicator: Plotting $||g_z||_{L^2}$ reveals the support of D.

Theory Insight: Approximate Solvability

- Far-field operator $\mathcal{F} \colon L^2(\mathbb{S}^1) \to L^2(\mathbb{S}^1)$ is compact.
- Clamped Transmission Problem: Find
 - $(p,q) \in H^1(\mathbb{R}^2 \setminus \overline{D}) \times H^1(D)$ s.t.
- Compactness from analyticity of $u^{\infty}(\hat{x}, d)$.
- Approximate solutions exist if \mathcal{F} is injective with dense range.
- This holds if a related clamped transmission problem has only the trivial solution.

This justifies use of norm of g_z as an indicator.

- in $\mathbb{R}^2 \setminus \overline{D}$ $(\Delta - \kappa^2)p = 0$ $(\Delta + \kappa^2)q = 0$ in D $q + p = 0, \quad \partial_{\nu}q + \partial_{\nu}p = 0 \quad \text{on } \partial D$ **Reciprocity:** $u^{\infty}(\hat{x}, d) = u^{\infty}(-d, -\hat{x})$
- $\Rightarrow \mathcal{F}$ injective implies \mathcal{F}^* injective.

Asymptotic behavior:

 $|u_H^s| = \mathcal{O}(r^{-1/2}), \quad |u_M^s| = \mathcal{O}(e^{-kr}r^{-1/2}).$

The far-field pattern $u^{\infty}(\hat{x}, d)$ satisfies:

$$u^{s}(x) = \frac{e^{ik|x|}}{\sqrt{|x|}} u^{\infty}(\hat{x}, d) + \mathcal{O}(|x|^{-3/2}).$$

Inverse problem: Recover D from $u^{\infty}(\hat{x}, d) =$ $u_H^{\infty}(\hat{x}, d)$ for all $\hat{x}, d \in \mathbb{S}^1$.

Select LSM Reconstructions

Apple-shaped cavity, $\kappa = 2\pi$, no noise, 30 incident/observation directions, 250×250 grid.

Apple-shaped cavity, $\kappa = 2\pi$, noise $\delta = 0.05, 30$ incident/observation directions, 250×250 grid.

Conclusion: If κ^2 is not a clamped eigenvalue, then \mathcal{F} is injective with dense range in $L^2(\mathbb{S}^1)$.

Extended Sampling Method (ESM)

Goal: Approximate the location of the cavity $D \subset \mathbb{R}^2$ using only one incident plane wave or limited aperture data.

Idea: Compare measured far-field data with known test fields from artificial obstacles centered at sampling points $z \in \mathbb{R}^2$.

Test Field: Let $U_{B_z}^{\infty}(\hat{x}, \hat{y})$ be the far-field pattern of a sound-soft disk centered at z. It is given by:

 $U_{B_z}^{\infty}(\hat{x}, \hat{y}) = e^{i\kappa z \cdot (\hat{y} - \hat{x})} U_{B_0}^{\infty}(\hat{x}, \hat{y})$

Known Kernel: The unshifted field $U_{B_0}^{\infty}$ admits a closed-form expansion involving Bessel and Hankel functions.

ESM Equation:

$$\mathcal{F}_{B_z}g_z = u^{\infty}, \quad (\mathcal{F}_{B_z}g_z)(\hat{x}) = \int_{\mathbb{S}^1} U_{B_z}^{\infty}(\hat{x}, \hat{y}) g_z(\hat{y}) ds(\hat{y})$$

Indicator Principle:

- Small-norm solutions g_z exist only if $D \subseteq B_z$.
- No need for full multistatic data—only one incident direction suffices.

Peach-shaped cavity, $\kappa = 2\pi$, noise $\delta = 0.05, 30$ incident/observation directions, 250×250 grid.

Parametrization of Peach:

 $\gamma(t) = 0.22(\cos^2 t\sqrt{1-\sin t} + 2)(\cos t, \sin t)$

Select Multilevel ESM Results

Multilevel strategy improves accuracy by zooming in on the cavity through iterative radius refinement. Fixed direction $d = (1/2, \sqrt{3}/2)$.

Apple-shaped cavity location:

References

- L. Bourgeois, A. Recoquillay, The linear sampling method for Kirchhoff-Love infinite plates, *Inverse* Problems and Imaging, vol. 14, no. 2, pp. 363–384, 2020.
- H. Dong, P.J. Li, Uniqueness of an inverse cavity scattering problem for the biharmonic wave equation, Inverse Problems, vol. 40, no. 6, 2024.
- J. Guo, Y. Long, Q. Wu, J. Li, On direct and inverse obstacle scattering problems for biharmonic waves, Inverse Problems, 2024.
- J. Liu, J. Sun, Extended sampling method in inverse scattering, Inverse Problems, vol. 34, no. 8, pp. 085007, 2018. https://dx.doi.org/10.1088/ 1361-6420/aaca90.

Apple at origin

Apple at (-1.5, 1.5)