Name:	$\mathbf{D} \cdot \mathbf{I}$.
Name:	Date:

Instructions. Show all work with clear, logical steps. No work or hard-to-follow work will lose points. Scientific calculators are allowed. **2** points for name/date

Problem 1. (8 points, 2 points each) Given the information in the table below, use the discriminant D to find and classify any critical points for the function g(x,y). (**Hint:** there are four critical points in the table).

(x_0,y_0)	$g(x_0,y_0)$	$g_x(x_0,y_0)$	$g_y(x_0,y_0)$	$g_{xx}(x_0,y_0)$	$g_{xy}(x_0,y_0)$	$g_{yy}(x_0,y_0)$
(0,1)	0	3	0	0	-2	4
(4, 3)	-3	0	0	-1	2	-6
(2,7)	15	0	0	4	5	8
(5,6)	4	0	0	3	5	2
(-2, 8)	2	0	0	2	2	2

pts Given the information in the table below, find and classify any critical points for the function g(x,y).

(x_0,y_0)	$g(x_0,y_0)$	$g_x(x_0, y_0)$	$g_y(x_0, y_0)$	$g_{xx}(x_0,y_0)$	$g_{xy}(x_0,y_0)$	$g_{yy}(x_0,y_0)$
(0,1)	0	3	0	0	-2	4
(4,3)	-3	0	0	-1	2	-6
(2,7)	15	0	0	4	5	8
(5,6)	4	0	0	3	5	2
(-2,8)	2	0	0	2	2	2

Solution: First check for each point that both g_x and g_y are 0.

• Hence (0,1) is not a critical point. [1 pt]

Next, let's compute the discriminant of each point.

•
$$(4,3)$$
: $D = g_{xx}g_{yy} - (g_{xy})^2 = -1 \cdot (-6) - (2)^2 = +2$

•
$$(2,7)$$
: $D = g_{xx}g_{yy} - (g_{xy})^2 = 4 \cdot 8 - (5)^2 = 7$

•
$$(5,6)$$
: $D = g_{xx}g_{yy} - (g_{xy})^2 = 3 \cdot 2 - (5)^2 = -19$

•
$$(-2,8)$$
: $D = g_{xx}g_{yy} - (g_{xy})^2 = 2 \cdot 2 - (2)^2 = 0$

When D > 0, we have a relative extrema. Hence (4,3) and (2,7) are relative extrema. To determine whether they are maxs or mins, we need to check the sign of g_{xx} .

- (4,3): $g_{xx} = -1 < 0$. Hence (4,3) is a relative max. [2 pt]
- (2,7): $g_{xx} = 4 > 0$. Hence (2,7) is a relative min. [1 pt]

When D < 0, we have a saddle point. Hence (5,6) is a saddle point. [4] pt]

When D = 0, the test is inconclusive. Hence at (-2, 8) the test is inconclusive. [1 pt]