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Abstract

This paper addresses the inverse problem of qualitatively recovering a clamped cavity in a thin
elastic plate using far-field measurements. We present a strengthened analysis of the linear
sampling method (LSM) by carefully examining the range of the far-field operator and employ-
ing the reciprocity relation of the biharmonic far-field pattern. In addition, we implement both
the LSM for reconstructing the cavity and the extended sampling method for localizing the cavity

under limited-aperture data. Numerical experiments demonstrate the effectiveness and robustness
of both methods.

1. Introduction

This paper investigates the inverse cavity scattering problem in a thin, infinitely extended elastic plate,
where the objective is to determine an unknown cavity from the scattering of time-harmonic flexural
waves governed by the biharmonic wave equation. Scattering of biharmonic waves in thin plates has
diverse applications, including the design of ultra-broadband elastic cloaks for vibration control in
vehicles and earthquake resistant buildings [11-14, 29]. Platonic crystals, which are periodic arrays of
cavities, enable wave manipulation similar to photonic and phononic crystals [15, 28]. Acoustic black
holes passively trap flexural waves, supporting applications in noise reduction, energy harvesting, and
biomedical devices [22, 27]. The biharmonic model also underlies non-destructive testing and structural
health monitoring in aerospace engineering [3, 25]. Despite these diverse applications, the theoretical
study of biharmonic wave scattering remains comparatively underdeveloped. In contrast to classical scat-
tering problems involving wave propagation in unbounded media, biharmonic waves describe out-of-
plane displacements in thin elastic plates, presenting unique mathematical and computational challenges.

Computational approaches to inverse scattering are generally classified into optimization-based meth-
ods and sampling methods. Optimization-based techniques, though often highly accurate, require good
initial guesses and involve significant computational cost due to the repeated solution of direct problems.
In contrast, this work focuses on sampling methods, which aim to reconstruct the scatterer’s bound-
ary using indicator functions. These methods offer advantages such as reduced dependence on a priori
geometric or physical information. However, they typically rely on multistatic measurement data and
tend to yield only partial reconstructions. Notable examples include the linear sampling method (LSM),
factorization method, reverse time migration, enclosure method, probe method, and direct sampling
method [1, 4, 7, 8, 17, 19-21]. We refer to the monograph for a comprehensive overview of qualitative
approaches in inverse scattering theory [5].

Scattering problems for biharmonic waves have recently received increasing attention. A boundary
integral formulation for biharmonic wave scattering was developed in [9], and the well-posedness of the
associated direct problem was established in [2]. The uniqueness of the inverse cavity scattering prob-
lem was demonstrated in [10], while an optimization-based approach was proposed in [6]. The applica-
tion of the LSM to the inverse cavity problem in a Kirchhoff-Love plate model with near-field data was

© 2025 The Author(s). Published by IOP Publishing Ltd
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investigated in [3]. In this work, we adapt the LSM and utilize far-field measurements, which offer sev-
eral technical advantages for the biharmonic cavity scattering problem. Specifically, the decomposition
of the scattered field into Helmholtz and modified Helmholtz components allows to exploit the expo-
nential decay of the modified Helmholtz wave component. Furthermore, far-field measurements only
involve plane waves, whereas near-field formulations must account for both the distance-dependent fun-
damental solution and dipole sources. As a result, far-field data reduce the complexity and quantity of
required measurements, making them particularly attractive for practical implementation. Importantly,
there exists a one-to-one correspondence between the far-field patterns of biharmonic and Helmholtz
scattered waves, which provides a rigorous justification for applying the LSM in this setting.

Recently, the LSM was applied to identify unknown clamped cavities in a Kirchhoff-Love plate model
using far-field measurements [16]. In that work, the theoretical justification required that the wavenum-
ber not coincide with any Dirichlet eigenvalue of the scatterer. However, our analysis shows that this
condition is not essential for accurate reconstruction. By deriving a reciprocity relation for the bihar-
monic far-field pattern, we relax the restriction on the wavenumber. Moreover, we propose a new fac-
torization of the far-field operator that avoids the need for this additional assumption. In addition, we
adapt the extended sampling method (ESM) introduced in [24], enabling accurate localization of the
scatterer using far-field measurements from as few as a single incident direction. This enhancement is
particularly valuable in engineering applications such as non-destructive testing and structural health
monitoring, where acquiring multistatic data is often impractical due to the cost and complexity of
deploying multiple sensors. By eliminating the dependence on multistatic measurements, our approach
simplifies experimental implementation and reduces resource requirements, thereby improving its feasib-
ility and scalability in real-world settings.

The paper is outlined as follows. In section 2, we present the problem formulation of the bihar-
monic wave scattering. Section 3 establishes the reciprocity principle for the biharmonic far-field pat-
tern. Section 4 introduces a new factorization of the far-field operator and employs the reciprocity prin-
ciple to justify the LSM for reconstructing unknown cavities using far-field measurements. In section 5,
we extend the ESM to recover clamped cavities from limited far-field data. Finally, section 6 provides
numerical examples that demonstrate the effectiveness of the LSM with full-aperture far-field data and
the ESM with limited-aperture measurements.

2. Problem formulation

Let D C R? be a bounded open set with a smooth boundary T', representing the clamped cavity embed-
ded in an infinitely extended, thin, two-dimensional elastic plate governed by the Kirchhoff-Love model
in the pure bending regime. Assume that the exterior domain R?\ D is simply connected. We consider
an incident field in the form of a time-harmonic plane wave described by

l/li (X) — eiﬁx-d, x€E RZ7

where r > 0 represents the wavenumber, and d € S! is a unit vector indicating the direction of wave
incidence. The total displacement field u is governed by the time-harmonic biharmonic equation

Au—rk*u=0 inR*\D. (2.1)
For simplicity, we impose clamped boundary conditions on the cavity boundary on T}, i.e.
u=0, J,u=0, (2.2)

where v denotes the unit outward normal to I.
The total field u is represented as the superposition of the incident and scattered waves:

u=1u+u’,

where u* denotes the scattered field. The scattered field #* in the unbounded domain R?\ D satisfies the
two-dimensional biharmonic wave equation

A*f — k' =0 inR*\D, (2.3)
together with the clamped boundary conditions on I':

w4+ =0, O +o,u =0. (2.4)
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The scattered wave further satisfies the Sommerfeld radiation conditions for u° and Au’:

lim (0,u° —iku’) =0, lim /r(0,Au' —ikAw’) =0, r=|x|, (2.5)

r—00 r—00
which ensure that the scattered field is outgoing at infinity.

Following [2] and [9], we perform a biharmonic wave decomposition by introducing two auxiliary
functions
S 1 s 2.5 S 1 s 2.5
uH:fﬁ(Aufnu), uM:m(Aqunu), (2.6)

where uj; and u3, are referred to as the Helmholtz (or propagating) and modified Helmholtz (or evanes-
cent) components, respectively. Combining (2.1) with (2.6), we obtain in R?\ D

Augy+ rPuly =0, Aujy — KkPuy = 0. (2.7)
Moreover, a simple calculation yields
v =ul A uy,  Au =R (U — u). (2.8)

It follows from the clamped boundary conditions (2.2) that uj; and w3, satisfy the following coupled
boundary conditions on I':

uy +uy =—u', Opuy+0,uy =—0,u'.

As the propagating wave component, the Helmholtz component uj; satisfies the Sommerfeld radiation
condition

lim /r (0,u5; — ikuj;) = 0. (2.9)
r—00
Since u3, is the evanescent wave component, both u}, and its radial derivative 0,13, decay exponentially
as r — oQ.
Based on the operator splitting, the scattering problem defined in (2.3)—(2.5) is equivalent to a
coupled boundary value problem for the Helmholtz and modified Helmholtz equations, as given
in (2.7)=(2.9). The well-posedness of this coupled boundary value problem, and hence of the original
problem (2.3)—(2.5), for any wavenumber &, is discussed in [2, 30]. According to [2, Proposition 2.2],
the asymptotic behaviors of uj;, u3, and O,u;, are given by

s 1 s e—lir . e_’{r
MH:O<\/;>, |UM|:O(\/;), and |5ruM|:(’)(\/;>
as r — OQ.

By Green’s representation theorem, the Helmholtz and modified Helmholtz components admit the
following boundary integral representations for x € R? \ D:

uu@:14(@xnaw¢ﬁann>—aw%ooéuxnﬁ»dxw,

where p=H or M, and ®,(x,y;x) denotes the fundamental solution of the corresponding Helmholtz or
modified Helmholtz equation, expressed as

i

G (slx—y)), p=H
q)P(xJ/;K) = i a .

JHo (il —yl), p=M.

Here, HSI) refers to the zeroth-order Hankel function of the first kind.
Given that « is radiative, it can be expressed asymptotically as:

. eiﬂ'/4 eikr - 1
u (X) = 7ﬁ877r/<gwu (x) +0 <1’3/2> , T'— 00, (2.10)

3
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where x := x/r € S'. The far-field pattern of the scattered field v is described by the analytic function
4, which is defined on the unit circle S'. It characterizes the scattering amplitude of the radiating solu-
tion u° in the far-field region. The corresponding inverse problem consists of determining the cavity D
from knowledge of the far-field pattern u>.

Let F: L*(S') — L*(S') denote the far-field operator, specified by:

(F9)(3) = / u™ (%,d)g(d) ds (d).

St

This operator maps a density function g, defined on the unit circle of incident directions, to the corres-
ponding superposition of far-field patterns u>°(x,d) observed in directions x € S'. The inverse scatter-
ing problem for a clamped cavity can be stated as follows: Given the far-field operator F for a range of
wavenumbers k, determine qualitative characteristics of the clamped cavity D embedded in a thin elastic
plate. The uniqueness of this problem has been established in [10].

It is important to note that the direct scattering problem described by (2.3)—(2.5) is equivalent to
the coupled boundary value problem (2.7)—(2.9). Formulating the problem in this coupled form offers
a significant advantage: it transforms a fourth-order boundary value problem into a more tractable sys-
tem of second-order equations. Moreover, both u3; and 0,u5; decay exponentially as r — oo for a fixed
wavenumber x. Consequently, the far-field patterns of u* and uj; are identical.

3. Reciprocity principle of far-field patterns

We consider the recovery of a clamped cavity D from far-field measurements at a fixed wavenumber.
The reconstruction relies critically on an approximate solvability condition for the so-called far-field
equation, which is derived from a reciprocity principle satisfied by the far-field patterns of the scattered
field associated with the biharmonic wave equation. This section addresses the reciprocity relation in
detail.

By applying the definition of the far-field pattern in (2.10) and Green’s second identity, it is shown
in [10] that the far-field pattern admits the following Green’s representation formula:

1 ei7r/4 He—ixxy N, T
00 (&) — s _ paTlRXy d
=@ =35 [ (e S e S ) sty
1 eiTr/4 aefim@y .. OAY
—-——— Av'(y) —— —e "V — d , xesh 3.1
2K* /81K F( w0 v (y) ¢ v ()')) ) Gy

Let © be a bounded domain of class C?. Consider the Hilbert space
H (Q,A*) ={weH (Q): A’we *(Q)},
equipped with the norm
1WliEe .00 = Wlip@) + 1AWl q)-
The space H?*(£2,A?) is the maximal domain of the biharmonic operator A2, regarded as an unbounded

operator on L?(f2).
According to Green’s second identity, for u,v € H*(D, A?), we have

/{(Azu)v—AuAv} dxz/{vaﬁyu —Aug:}ds. (3.2)
D r

Applying identity (3.2) twice and interchanging the roles of u and v, we obtain

O0Au B Ov Ou aAV}ds. (3.3)

/D{(Azu)v—(sz)u}dx:/F{v a0

The boundary integrals are interpreted as dual pairings. For functions u € H*(D,A?), the corresponding
trace spaces on the boundary T" are u € H*/>(T"),0,u € H/*(I"), Au € H"'/>(T"), and 9, Au € H3/(T).

The following result establishes the reciprocity principle in two dimensions for the far-field pattern
of the radiating solution to the biharmonic wave equation.



10P Publishing

Inverse Problems 42 (2026) 015002 1 Harris et al

Theorem 3.1. For the direct scattering problem (2.3)—(2.5) with plane wave incidence ' = e"*%, the far-field
pattern u®(x,d) of the corresponding radiating solution satisfies the identity

u (—%,d) = u™® (—d,%), V& deS.

Proof. We begin by observing that applying (3.3) to the incident fields u(-,%) and u/(-,d) inside the scat-
terer D yields

o] (vt 20 <><>)

v ov

Using (3.3) to the scattered fields u*(-,d) and *(,X) in in the exterior domain By \ D, where By denotes the
open ball of radius R > 0, centered at the origin, chosen so that D C Bg, we have Isp, — Ir = 0, where

IF:A(MS(',X)WAuS(~,d)W> ds
+/F(Au5(-,x)a“;(;d)—u5(.,d>%'g£"@> ds, (3.5)

and

o o o 0AW(d) 0w’ (-, %)
Iop, : = /aBR (u (,%) 5, A (-, d) £y ds

oow(hd) . OAW(4R)
+/aBR (Au () T2 (~,d)> ds. (3.6)

We now wish to verify that
Iop, —+0 as R — oo.

Applying the decomposition of the scattered field given in (2.8), and substituting these expressions into
the boundary integral Iyg, in (3.6), we deduce

Iog,=(h— L)+ Us—Ta),

where

8uH )
8uM >
]3:/{2/ uf\/[ (7&) auH (’d) 7MSH X 8“M )dsa
OBr
auH >

For each term Jj, using the asymptotic behavior of the fields, we note that the L?(0Bg)-norms of uj; and
O,ujy remain bounded as R — co. Moreover,

e—mR ; e—HR
uy =0 (\/ﬁ)’ a,uM:O<\/E>, as R — oo,

and by applying the Cauchy—Schwarz inequality, we deduce that
Ji—0 asR—o0, j=1,2,34.

Therefore, we conclude that I, — 0 as R — co. Consequently, it follows that It = 0.

5
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Noting that the incident plane wave satisfies the Helmholtz equation, i.e. Au' = —r?u/, and substituting
this identity into the far-field pattern representation given by (3.1), we obtain

1 o OAU (-, d) ; o’ (+,X)
pye ( (%) =, — FAu(d) =5 = ) ds

_1/F<Aus(.75c)a”i('vd>_ui(,,d)(w>d5:m > (—d,). (3.7)

2K2 ov ov

Similarly, we have

: (‘w(-,d) ORWCR) | nyi.z) 5”5("61)) &
I

TK,Z ov v
U (o PECR) o QARG VBRT
“22 ). <Au (-,d) 5 U (-,%) 5 ds= peeral (=x,d). (3.8)

Now subtracting (3.7) from the sum of (3.4), (3.5), and (3.8), we obtain

SO (% (—d, ) — u™ (~%,d)) = — /F(—u(~7d)w+Au(_7£) aué.,d)>d5

eim/4 T 2R? v v
e Ou(-,x) - OAu(-,d) B
~ 2 ). (Au(-,d) 5, u(,x) a0 ds=0.

Notice that we have used the boundary conditions for the total field, i.e. u = 0,0, u = 0 on I', which com-
pletes the proof of the reciprocity relation. O

4, The LSM

In this section, we investigate the application of the LSM to reconstruct the scatterer D from far-field
measurements. The LSM is designed to construct an indicator function that determines whether a
sampling point z € R? lies inside or outside the cavity D. This is achieved by approximately solving the
far-field equation: for each z, find a function g, € L*(S") satisfying

1.
Fg,=0>(-,z), where &> (x,2) = 2—2e_m”, ze R (4.1)
K
Here, $>°(x,z) denotes the far-field pattern of the outgoing fundamental solution to the biharmonic
operator A% — k*, corresponding to a point source located at z € R?. This fundamental solution is expli-
citly given by

D (x,z) = 2—22 [Pn (x,z;8) — Py (x,2;8)], xF#z
The mapping z+ ||g;||;2(st) serves as the LSM indicator function: it tends to be large when z ¢ D and
relatively small when z € D, thereby allowing for the identification of the cavity’s support.

The LSM relies on a key analytical property of the far-field operator F, i.e. it is injective with a
dense range, under a suitable assumption on the wavenumber x. This property of F guarantees the
approximate solvability of the far-field equation and is essential for the validity of the LSM.

Following earlier studies, we derive a factorization of the far-field operator F to facilitate its analyt-
ical investigation. We introduce the auxiliary operator # : L*(S') — H*/?(T") x H'/3(T") defined by

Hg:= (Vg|Faaqu|F)Ta (4.2)

where
Ve (x) = / "™ dg(d)ds(d), xcR? (4.3)
Sl

is the Herglotz wave function. The operator H is called the Herglotz wave operator. By the linearity
of the direct scattering problem, the far-field operator Fg can be interpreted as the far-field pattern
corresponding to the incident field vy, i.e. with boundary data —Hg in the direct scattering problem
(2.7)-(2.9).
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To complete the factorization of the far-field operator, we introduce an additional auxiliary operator.
As established in [2], for any pair (h;,h,) € H/?(I') x H'/>(T'), the boundary value problem

A’w—riw=0 inR?\D,
w=h;, Ow=h, onl, (4.4)
lim, 00 /7 (0w —ikw) =0

is well-posed for w € Hi, (R?\ D). Indeed, we have the stability estimate
||W||Hz(BR\5) < C([|h1lleprry + Mhallens )

where By is a ball of sufficiently large radius R centered at the origin such that D C Bg, and C >0 is
a constant depending only on R. Based on this, we define the data-to-pattern operator G : H/2(T") x
H'/%(T) — L*(S"), given by

G (hi,hy) " =w™, (4.5)

which maps the boundary data (h;,h,) T € H¥?(T') x H'/?(I") to the corresponding far-field pattern w™>
of the radiating solution w to the boundary value problem (4.4). By the superposition principle, the far-
field operator F admits the factorization ' = —GH. The theoretical foundation of the LSM is based on
characterizing the cavity D in terms of the range of the auxiliary operator G.

In a subsequent lemma, we assume that the wavenumber « is not an eigenvalue of the clamped
transmission eigenvalue problem: find (p,q) € H'(R?*\ D) x H'(D) such that

Ap—rk’p=0 inR*\D,
Aq+k*q=0 inD, (4.6)
p+q=0, O,(p+q) =0 onl,
with the additional condition that p decays exponentially as r — co. Note that this eigenvalue problem
is different from the one studied in [3], where near-field measurements are used. In contrast, the use of
far-field data in our setting leads to a distinct eigenvalue problem. We refer to [18] for a detailed discus-
sion of the above clamped transmission eigenvalue problem (4.6).
In addition, we establish a key lemma essential for the applicability of the LSM. Recall that the LSM

constructs an indicator function for the cavity D via the far-field equation. Below, we present a range
characterization of the scatterer D in terms of the data-to-pattern operator.

Lemma 4.1. For the operator G : H/?(T') x H'/(T') — L(S") defined by (4.5), the clamped cavity D admits
the following range characterization:

®°(-,z) € Range(G) < z€D.

Proof. To prove the claim, we first assume that z € D and let w,(x) = ®(x,z) € R*\ D, where ®(x, z) is the
fundamental solution to the operator A% — k* with a source at z. Therefore, we can set the boundary data

(hihg)—r = (WZ‘F;8VWZ|F)T .

Notice that ®(x,z) is smooth in the region R? \ D. By the trace theorem, we have (k3,h3)T € H*/?(T) x
H'/(T"). The far-field pattern of w is given by

1 L
W (%) = s ges!,

which coincides with ®°(-, z). Therefore, we obtain
G(l,h) " = w2 =2 (- 2),
which implies that ®°(-,z) € Range(G).

Consider z € R?\ D. Assume, for contradiction, that there is a pair (h¢,h3) " € H/?>(T") x H'/?(T") such
that

G(h5, 1) == (,z).

7
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Then, there exists a solution w; to (4.4) whose far-field pattern satisfies w2°> = ®°°(-,z). By definition, the
far-field pattern of ®(-,z) coincides, up to a multiplicative constant, with that of ®y(+,z), the fundamental
solution of the Helmholtz equation. By applying Rellich’s lemma, we conclude that

won = Pu(-,2) inR?\ D,

where w, y is the Helmholtz component of the solution w,. However, this leads to a contradiction since
[w,n(x)| < oo and [®y(x,z)| — 0o as x — z. Therefore, the claim follows. O

Consequently, the range characterization of the cavity D in terms of the operator G, as established
in lemma 4.1, does not directly translate into an analogous characterization in terms of the range of
the far-field operator F. However, by the factorization of the far-field operator, we have Range(F) C
Range(G), a property that is important in our subsequent analysis. To proceed, we now turn our atten-
tion to the operator A defined in (4.2).

Lemma 4.2. The Herglotz wave operator H : L*(S') — H>/*(T') x H'/*(T") defined by (4.2) is compact and
injective.

Proof. To prove compactness, notice that the corresponding Herglotz wave functions are smooth solutions
to the Helmholtz equation in R?. Therefore, we have that v, € H; (R?), which implies

Range (H) € H/?(T') x H*/?(I').

The compactness of H then follows directly from standard Sobolev embedding theorems.
To establish injectivity, suppose that Hg = 0. Then the associated Herglotz wave function v, satisfies
vy = 0 and 0, v, = 0 on I'. By the unique continuation principle for solutions to the Helmholtz equation,
it follows that v, = 0 in D. This implies that g = 0, which proves that # is injective. O

Next, we present a result concerning a key analytical property of the far-field operator. Recall the
factorization

F=—-0H, (4.7)

where the operators H and G are defined in (4.2) and (4.5), respectively. We also recall the reciprocity
relation established in theorem 3.1. Combining these observations with theorem 4.2, we arrive at the
following result.

Theorem 4.3. The far-field operator F : L*(S') — L*(S") associated with (2.3)—(2.5) is compact and injective
with a dense range provided that the wavenumber k is not a clamped transmission eigenvalue for (4.6).

Proof. It follows from the factorization (4.7) and the compactness of # established in theorem 4.2 that the
far-field operator F is also compact.

To establish injectivity, suppose that Fg = 0 for some g € L*(S!). Since Fg is the far-field pattern associ-
ated with (2.3)—(2.5) for the incident field 4’ = Vg, Where v, is the Herglotz wave function defined in (4.3), it
follows that the Helmholtz component of the solution satisfies uj; = 0 in R? \ D. Consequently, the modified
Helmbholtz component of the total field, given by

(p,q) = (uy,vg) € H' (R*\D) x H' (D)

solves the eigenvalue problem (4.6). By the assumption that & is not a clamped transmission eigenvalue, it
follows that vy = 0 in D, which in turn implies g = 0. This proves the injectivity of F.

Lastly, regarding the density of the range, we note that, by the reciprocity relationship established in the-
orem 3.1, simple calculations yield

F ) = | A,

It follows that F™* is injective if and only if F is injective. Since the far-field operator is linear and bounded,
we have

Range (F) = Null (F*)™.

Therefore, the injectivity of 7* implies that Range(F) = L*(S'), establishing the density of the range and
proving the claim. O
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Algorithm 1. Linear sampling method (LSM).

1: Choose a cutoff parameter ¢ > 0, and select a mesh M of sampling points in a region €2 that contains
the cavity D;

2: For each sampling point z € M, compute an approximate solution g;* to the far-field equation (4.1)
using Tikhonov regularization in conjunction with the Morozov discrepancy principle;

3: Classify the sampling point z as inside the cavity Dif 1/ ||g&* ||L1(sl) > (, and as outside D if

/1182 sy < €

The following result characterizes the behavior of the indicator function in the LSM. In essence, this
result states that the approximate solution to the far-field equation (4.1) remains bounded when the
sampling point lies inside the scatterer D. This property provides a practical computational criterion for
reconstructing the scatterer from the far-field operator.

Theorem 4.4. Assume that the wavenumber k is not an eigenvalue of the clamped transmission eigenvalue
problem given in (4.6). Then, for any z € R? \ D and any sequence {g'} C L*(S") satisfying

iiLHOHfg?—‘I’OO (-,Z) Hp(gl) =0, (4.8)
it follows that
Jim 2| 12(s1) = o0

Proof. We begin by assuming z € R? \ D. Since & is not the clamped transmission eigenvalue, the operator
F is both compact and one-to-one in L*(S'), with a range that is dense in the space. Therefore, the far-field
equation (4.1) admits an approximate solution, which may be obtained, for instance, via Tikhonov regular-
ization, such that

| Fg’ — @ (-,2) 2@ < as o — 0,

.| =

asj — o0c. Define gj := g;’. We claim that the sequence {gj} cannot be bounded in L*(S!).

Suppose, for the sake of contradiction, that ||gj||;>(s1) is bounded for all j € N. Then, there exists a
subsequence, still denoted by g;, that converges weakly to some g € L*(S"). Since # is compact, we have
Hg; — Hgin H/*(I') x H/*(T') as j — oo. As G is bounded, it follows that GHgj — GHgin L*(S') as
j — 00. Using the factorization (4.7) and the convergence in (4.8), we obtain

.Fg:_gHg:q)oo(az)7 ZGRZ\B'

This contradicts theorem 4.1, and therefore ||g%*|2(s1) — 00 as v — 0. O

The LSM reformulates the problem of determining the shape of the cavity D as the calculation of the
indicator function g, as described in theorem 4.4. The overall computational steps are summarized in
algorithm 1. In our numerical experiments, for simplicity and consistency, the regularization parameter
« was set to a fixed value a = 107°. In practice, a can be selected using standard techniques such as the
Morozov discrepancy principle, which determines an appropriate value based on the noise level in the
measured data.

5. The ESM

In this section, we adapt the ESM to the inverse scattering problem of locating a clamped cavity based
on far-field measurements from one or a few incident directions. Specifically, the goal is to determine
the location of the cavity D from u>(%,d) not identically zero, where (%,d) € S! x S, _ for one or mul-
tiple wavenumbers. Here, S} - C S' denotes the set of incident directions. For example, if S| = {d}, the
scattering data consist of the far-field pattern generated by a single incident wave. In contrast, the full
aperture case corresponds to the far-field data > (%,d) for all x,d € S!, i.e. S, . =S'. In this case, the
clamped cavity D can be uniquely determined from the full aperture far-field data. The ESM is designed
to recover the location of the clamped cavity using limited aperture data.

The ESM is closely related to the methods developed in [23] and [24], which investigate the range
test and the convex scattering support method for acoustic scattering problems. Similar to the ESM, both

approaches utilize far-field data corresponding to a single incident wave. In [23], the associated integral
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equation admits a solution only if the scattered field can be analytically continued up to the boundary
of the test domain. By computing convex supports over various domains and intersecting them, one can
approximate the scatterer. The ESM, however, employs a slightly different integral equation and, rather
than constructing convex domains, evaluates an indicator function at each sampling point, which natur-
ally enables the incorporation of multifrequency and multi-directional data.

We begin by presenting the justification of the ESM for the inverse clamped scattering problem with
a single incident wave. Consider the case where the far-field pattern u®°(x,d) is known corresponding to
one fixed incident direction d. Let B= Br(0) C R? denote a sound-soft disk centered at the origin with
sufficiently large radius R. For any sampling point z € R?, we define

B,=B(z,R):={x+z|x€B,zeR*},
and let Uy (x,7), with x € R*\ B, denote the solution to acoustic sound soft scattering problem

AUy ++*Up, =0 inR*\B,,
Uy, = —€"*J  on 0B, (5.1)
lim, o0 \/?(&USBZ — inU};Z) =0.

By applying the method of separation of variables (see, e.g. [24]) to the case of a disk centered at the
origin, the far-field pattern of Uy(x,y) is given by

o e [2 [ JolR) S T (sR) . :
Uy (%,9) = —e /4 — [HSI)(/{R) +2;H£11) (=R cos(n(0,—6,))|, xeS', (5.2)

where J, and H" refer, respectively, to the Bessel and Hankel functions of the first kind of order n, and
0,0, are the observation angle for x and the incident angle for j, respectively. By [24], the far-field pat-
tern of the solution Uy for a disk centered at z € R* can be expressed as

UP (%,7) =" U=9U® (%,7), xeS. (5.3)

z

To construct a sampling method using the precomputed far-field pattern Ug°(%,) together with the
measured far-field data u® (x,d), let M denote a sampling domain containing the cavity D. Note that
U’ (%,7), obtained from (5.2) and (5.3), is independent of the actual scatterer D. For each sampling
point z € M, let Fp, : L*(S') — L*(S') be the modified far-field operator, defined by

Fag® = [ U (27)g0)&0). 5eS

where U°(%,7) denotes the far-field pattern corresponding to the scattering of a sound-soft disk B, by
an incident plane wave from direction j. Using the modified far-field operator Fp_ , we formulate the
modified far-field equation associated with the ESM. Specifically, for a fixed d € S!, we seek a function
g € L*(S!) satisfying

(F.g) (%) =u™ (%,d), xeS". (5.4)

It is advantageous to place the given data on the right-hand side of the far-field equation. To ana-
lyze this equation, we introduce auxiliary operators that enable the factorization of the modified far-field
operator Fp,_. Following [24], we define Gp_: H'/?(0B,) — L*(S') by

ngf:: WOO7
where W* denotes the far-field pattern of W® that satisfies

AW+ £*W=0 inR?\B,,
W =f on0B,,

together with the Sommerfeld radiation condition. This definition is equivalent to replacing the plane
wave —e**7 in (5.1) with a general boundary function f € H'/?(9B,).

10
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We also define the Herglotz operator Hp_ : L*(S') — H'/2(9B,) associated with (5.1) as

Hp.g = vy |08,

where v, is the Herglotz wave function with density g, defined in (4.3). Then, as in the previous section,
the modified far-field operator admits the factorization

]:Bz = _gBZHBZ~

We note that this modified far-field operator is associated with an acoustic scattering problem, which
differs fundamentally from the biharmonic scattering problem under consideration here.

The main reason for considering using the ESM method which was developed for acoustic scattering
is due to the fact that u®°(x,d) = uiP (X,d). This implies that even though the given far-field data cor-
responds to a biharmonic scattering problem, we only retain the propagating part of the solution in the
far-field.

The following theorem provides a theoretical justification for how the solution of equation (5.4) can
be used to characterize the location of the clamped cavity D.

Theorem 5.1. Let B, be a disk of radius R centered at a sampling point z, and let D be a clamped cavity in a
thin elastic plate. Suppose that r* is not a Dirichlet eigenvalue of — A in B,. Then, for any d € S, the modified
far-field equation admits the following properties:

(i) IfD C B,, then for every € > 0, there exists a function g € L*(S') such that

lim || Fp.g2" = u> (-, d)|| 251y = 0 (5.5)

and the associated Herglotz wave function ve converges to v € H'(B;) that is a solution to the Helmholtz
equation in B,, where v = —ui(-,d) on OB, as & — 0.
(i) IfDNB, =0, then for any g satisfying (5.5), it holds that

iig})”gza”Lz(Sl) = 00. (5.6)

Proof. First, we prove that (5.5) holds. Assume that D C B, and define f = uj;(-,d)|ap,, the trace of the
propagating part of the scattered field, which belongs to H'/?(9B,) since D C B,. By the definition of Gg_,
the function f satisfies

Gpf=uy (-.d) =u>(-,d).

This follows from the fact that uj;(-,d) solves (5.1) with Dirichlet data f = uj;(-,d)|s5,. Hence, for any d €
S', we have u>°(-,d) € Range(Gg,).

Since k2 is not a Dirichlet eigenvalue of —A in By, it follows from [24, lemma 3.1] that the operator Hp,
has dense range. Therefore, there exists g € L?(S') such that

lim H5.82 + uis (-, D) /2 o5,y = O-
Consequently,

1 Fp.85 —u™ ()l sy = 198, (—Hp.) &2 — Gy (- d) | 2
<NGe.ll - 1 Mp.88 + iy (- )l /28, -

By the well-posedness of the Dirichlet problem for the Helmholtz equation in B,, we have that v« converges
in H!(B,) to the unique solution v € H'(B,) of the Helmholtz equation with Dirichlet boundary condition
v=—uj;(-,d) on OB,.

Next, we prove (5.6) by contradiction. Suppose that DN B, = (J and that the modified far-field
equation (5.4) has an approximate solution g € L*(S') satisfying ||g%'||;2(s1) < 0. Then, there is a sequence
of positive numbers such at o, — 0 as n — oo where the sequence {g2"} converges weakly to some g, €
L*(S"). Since ? is not a Dirichlet eigenvalue, the operator Fp_has dense range; thus, there exists a density
g for which (5.5) holds. Consequently, v¢' converges weakly to v, in H] (R?)as a, — 0and n — oo.

11
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Algorithm 2. Multilevel extended sampling method (ESM).

1: Choose an initial sampling radius R sufficiently large, and construct a coarse sampling grid M such that the
spacing between adjacent sampling points is approximately R;

2: For each z € M, compute the far-field data UR° (%,7) for all £,7 € S';

3: Using the ESM procedure, define the regularized solution

& = (al+ F5.Fp,) " FRu™,
identify the global minimizer z) € M of ||g7' |2 (1) and use By, as an initial approximation of the support of D;
:forj=1,2,... do
Set R; = R/2’ and construct a finer sampling grid M; with spacing approximately R;;
Determine the minimizer z; € M; of || g’ HLZ(Sl). Ifzj ¢ B;,_,, terminate the iteration and proceed to Step 8;

: end for
: Return z;_ as the estimated location and B, _, as the approximate support of the clamped cavity D.

SN NG N

By well-posedness of the exterior sound-soft scattering problem, there exists a unique radiating solution
V* € H|, _(R?\ B,) satisfying

AV +k*V*=0 inR?\B,,
Vs‘aBZ = 7ng’
limy 0 /7 (8,V° — ik VF) = 0.

Let V*° denote the far-field pattern of V*. Because the modified far-field operator is compact,
Fpg" — Fpg=—0p, (Hp,)g =V asn— 0.

From (5.4), we deduce —Gp vy |op, = V°°, which implies V> = u> (-, d) = ug’ (-, d).
By Rellich’s lemma, it follows that V* = u;(-,d) in R? \ (DU B,). Define the function W* by

— Vv iI.le\BZ,
iy (-,d) inB,.

Then W* € H], (R?) is a radiating solution to the Helmholtz equation in all of R?. By the uniqueness of
radiating solutions, we deduce that W* = 0. In particular, this implies #;; = 0 in B,, and by unique continu-

ation, u$;(-,d) = 0 in R2. However, this contradicts the assumption that u{¥ (-, d) is not identically zero.  [J

It is worth noting that, since we have control over the radius R of the sampling disk, it can be selec-
ted so that x? does not coincide with any Dirichlet eigenvalue of —A on B,. Consequently, the ESM is
applicable for all wavenumbers x. In contrast, the LSM requires excluding wavenumbers for which the
clamped transmission problem (4.6) admits nontrivial solutions.

An important step in implementing the ESM is selecting the radius R of the sampling disk B,. To
this end, we adopt the multilevel ESM strategy proposed in [24] to determine an appropriate value of R,
as summarized in algorithm 2.

In practical scenarios, far-field measurements can typically be collected at finitely many incident dir-
ections,

u (,dj), dje{dl,dz,,d]}:gl QSI

mc

For each incident direction d;, we consider the discrete system of equations
(Fp.g) (3dj) =u> (d), j=1,....JL (5.7)

Denote by g&'(X;d;) the regularized solution to (5.7) corresponding to the incident direction d;. Then, the
indicator function Z(z) for multiple incident directions z € M is defined as

]
2> 1187 (5d) Iy, z€ M. (5.8)
j=1
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Similarly, we can incorporate multiple frequency data. Let ¢ (-;d;, k¢) denote the regularized solution
to the modified far-field equation at frequency ri¢ € {r¢}5_, C R. Then, the corresponding indicator
function Z(z) is defined by the mapping

L ]
Z’HZZHg‘? (';dja"if)HLz(Sl)a ze M. (59)

=1j=1

This gives a method that detects the location of the scatterer from reduced far-field data.
6. Numerical experiments

This section provides several numerical experiments illustrating the performance of the LSM and the
ESM in solving the two-dimensional inverse biharmonic scattering problem for a cavity embedded in a
thin elastic plate. In our simulations, the boundary of the model cavity is described parametrically as

x()=(x(1),x ()", 0<t<2m

The synthetic far-field data are generated by solving the corresponding direct scattering problems using
the double-single layer potential boundary integral equation method introduced in [9]. The exact para-
metric representations of the cavity boundaries are listed in table 1 and illustrated in figure 1.

6.1. The LSM
We use the system of boundary integral equations developed in [9] to approximate the discretized far-
field operator:

F=[u (5.4)]

5, 1
ij=1° xi7dj€S ;

where F is an N X N complex-valued matrix corresponding to N incident and observation directions.
The directions are given by

% =d; = (cos(6;),sin(6;))", 6 =2m(i—1)/N, i=1,...,N.

An additional quantity required is the far-field data vector of the fundamental solution, denoted by ¢, =
®(-,z), which is computed as
—ikX; -z —irkyz) | 2
<pZ:(e Ee e N) , zeR~
To evaluate the stability of the method, we simulate experimental errors by adding random noise to
the discretized far-field operator F, resulting in the perturbed data:
S N
F° = [Fi,j (1 + 5E,7])} ij=1° where ||E||2 =1.
Here, E € CN*N is a random matrix with complex-valued entries, and § > 0 denotes the relative noise
level. In our numerical experiments, we consider noise levels of § = 2% and 5%.
We numerically approximate the indicator function by solving for g and plotting it is norm for any
grid point z. Therefore, we define the indicator function for the LSM as follows:

1

=T
g2l

Z(2)

where g is the Tikhonov regularized solution to discretized far-field satisfying
(al+FF)g =Fe,

and ||-||ov denotes the standard Euclidean norm on CN. We pick the regularization parameter ad-hoc
such that & = 107° to reconstruct the clamped cavities. In general, one can use a discrepancy principle
to pick an optimal « but in our numerical experiments we see that this choice gives good reconstruc-
tions. Unless otherwise specified, the reconstructions are performed using far-field data with N =32
observation and incident directions.

In each example, the imaging domain is taken to be [—1.5,1.5] x [—1.5,1.5], discretized into a 128 x
128 uniformly spaced grid. The boundary of the exact cavity is depicted by white dashed lines in the

13
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Table 1. The parameterized boundary curves.

Boundary type Parameterization

_0.55(14+0.9cost+0.1sin2t)

Apple-shaped t t,sint), t€[0,2
pple-shape x(1) 15 0.75 cost (cost,sint), t€ [0,2m]
Peanut-shaped x(t) = 0.275v/3 cos’ t+ 1(cost,sint), t€ [0,27]
Peach-shaped x(t) = 0.22(cos? tv/T — sint + 2)(cost,sint), t€ [0,27]
(a) Apple-shaped cavity (b) Peanut-shaped cavity (c¢) Peach-shaped cavity

Figure 1. Model cavities.

Reconstruction no error

Reconstruction no error

(a) k=m (b) kK =2m

Figure 2. Example 1: Reconstruction of the apple-shaped cavity using the LSM with (a) x = 7 and (b) k = 2, employing a
regularization parameter & = 10~°. No random noise is added in this example.

figures. We note that the boundary integral equations in [9], used to approximate the discretized far-
field operator, require the boundary to be analytic. While the apple-shaped and peanut-shaped cavities
considered in our examples satisfy this condition, we also include a test case involving a non-smooth,
peach-shaped cavity to further evaluate the robustness of the method.

6.1.1. Example 1. An apple-shaped cavity
For the apple-shaped cavity, we consider wavenumbers x = 7 and 2. In the initial reconstructions
shown in figure 2, we assume access to the discretized far-field operator with N =32 observation and
incident directions, and no noise is added to the data. The results demonstrate that the spatial resolution
of the reconstructed cavity improves with increasing wavenumber x.

Figure 3 presents additional reconstructions of the apple-shaped cavity with random noise levels
0 =0.02 and 0.05, corresponding to 2% and 5% relative noise, respectively. The reconstructions remain
stable under noise, illustrating the robustness and effectiveness of the LSM in recovering the cavity
shape. Figure 4 shows that the reconstruction becomes more robust to noise as the number of incident
and observation directions increases.

6.1.2. Example 2. A peanut-shaped cavity
For this reconstruction, we use the same physical parameters as in the apple-shaped cavity. In figure 5,
we observe that the reconstructions of the peanut-shaped cavity are again reasonably accurate, with

14
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Reconstruction with 2% error

Reconstruction with 5% error

(a) & = 2% (b) & = 5%

Figure 3. Example 1: Reconstruction of the apple-shaped cavity using the LSM at wavenumber x = 27, with noise levels (a)
6 = 2% and (b) § = 5%. The regularization parameter is set to o = 10~°.

Reconstruction with 5% error, N=64 Reconstruction with 5% error, N=128

(a) N = 64 (b) N =128

Figure 4. Example 1: Reconstruction of the apple-shaped cavity using the LSM at wavenumber x = 27, with 5% random noise

added to the data. The reconstructions are performed with varying numbers of incident and observation directions: (a) N = 64
and (b) N =128.

Reconstruction no error Reconstruction no error

() k=m (b) kK =2m

Figure 5. Example 2: Reconstruction of the peanut-shaped cavity using the LSM with (a) x = 7 and (b) x = 27. No random
noise is added in these experiments.
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Reconstruction with 2% error Reconstruction with 5% error

(a) & = 2% (b) & = 5%

Figure 6. Example 2: Reconstruction of the peanut-shaped cavity using the LSM with a wavenumber of £ = 7 and added random
noise. The noise levels are (a) § = 2% and (b) § = 5%, with a regularization parameter o = 10~°.

Reconstruction with 5% error, N=64 Reconstruction with 5% error, N=128

(a) N =64 (b) N =128

Figure 7. Example 2: Reconstruction of the peanut-shaped cavity using the LSM with a wavenumber of k£ = 7 and 5% random
noise added. The reconstructions are shown for varying numbers of incident and observation directions: (a) N = 64 and (b)
N =128.

improved spatial resolution as the wavenumber « increases. Using the LSM imaging function, we suc-
cessfully recover the cavity’s location, size, and shape.

Figure 6 demonstrates that the reconstructions remain robust in the presence of random noise, high-
lighting the effectiveness of the LSM in identifying the clamped cavity. As shown in figure 7, the recon-
structions exhibit increased robustness to noise when the number of incident and observation directions
satisfies N > 64.

6.1.3. Example 3. A peach-shaped cavity

Unlike the apple- and peanut-shaped cavities, the peach-shaped cavity does not possess an analytic
boundary; its first derivative exhibits a singularity at = 7r/2. In figure 8, the reconstructions are reas-
onably accurate, with improved spatial resolution observed as the wavenumber & increases. These res-
ults demonstrate the effectiveness of the LSM in accurately reconstructing cavities with non-analytic
boundaries. Figure 9 further illustrates the robustness of the LSM in the presence of random noise for
the peach-shaped cavity. As shown in figure 10, the reconstructions become more robust to noise with
an increasing number of incident and observation directions.

6.1.4. Recovering the unit ball with a Dirichlet eigenvalue

In addition to assuming that the wavenumber 2 is not an eigenvalue of the clamped transmission prob-
lem given by (4.6), the main result in [16] also assumes that x* is not a Dirichlet eigenvalue of —A in
D. However, this latter assumption is not essential for the effective reconstruction of a clamped cavity.

16



10P Publishing Inverse Problems 42 (2026) 015002 1 Harris et al

Reconstruction no error Reconstruction no error

(a) k=m (b) kK =2m

Figure 8. Example 3: Reconstruction of the peach-shaped cavity using the LSM with (a) K = 7 and (b) k = 27, using a regulariz-
ation parameter of a = 107°,

Reconstruction with 2% error Reconstruction with 5% error

0.15
D; 0.1
u: 005
i-;
15 -1 05 [ 05 1 15

(a) & = 2% (b) 6 = 5%

0.15

Figure 9. Example 3: Reconstruction of the peach-shaped cavity using the LSM with a wavenumber of £ = 7 and added random
noise. The noise levels are (a) § = 2% and (b) § = 5%, with a regularization parameter of « = 107°.

Reconstruction with 5% error, N=64 Reconstruction with 5% error, N=128

(a) N =64 (b) N =128

Figure 10. Example 3: Reconstruction of the peach-shaped cavity using the LSM with a wavenumber of x = 7, 5% random noise,
and a regularization parameter of o = 10, for varying numbers of incident and observation directions: (a) N = 64 and (b)
N =128.
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Unit Ball Cavity with =, Unit Ball Cavity with « =i,

. — 015
01
| D i.
EY 0
-15 -1 05 0 05 1 15

(a) & = jor (b) & = jo2

— 015

Figure 11. Example 4: Reconstruction of the unit disk using the LSM with no added noise and a regularization parameter of oo =
107°. (a) K = joi; (b) K = joz, where jo; and jo are the first and second positive zeros of the Bessel function Jo(r), respectively.

For instance, consider the case where k> = A, with \ being an eigenvalue of the Dirichlet problem:
—A¢p=A¢p inB;(0), ¢$=0 ondB(0).

The eigenvalues of this problem are given by A, = j2,,, where j,,, denotes the mth positive zero of the
Bessel function J,(r) of order n. Thus, A, = v/Amn = jun- Figure 11 illustrates the reconstruction of the
unit disk D = B;(0) using k1 & 2.40483 and k; & 5.5201, which are the first and second roots of Jo(r)
and correspond to the Dirichlet eigenvalues of —A in B;(0).

6.2. The ESM

We present several numerical examples to demonstrate the effectiveness of the ESM in recovering the
location of clamped cavities. As test geometries, we again consider the apple-, peanut-, and peach-shaped
cavities defined in table 1. The far-field data u>(x,d) , for (%,d) € S! x Sl , are computed as discussed

mc
in the previous section. In each example, we employ an equally spaced 200 x 200 sampling grid over the

imaging domain. For each sampling point z, we apply Tikhonov regularization with a fixed parameter
a = 10"* to solve the discretized modified far-field equation. This gives that (5.7) becomes linear system

Atg) =u> (-, d),
where the matrix A? is defined as
A= eirz (%) oo (%.7;), ij=1,2,...,40.
The regularized solution is computed by
g (d) ~ ((A) A +al) (A7)0 (),
where I is the identity matrix. The discrete indicator function is then defined as

107
79~ gl

for all sampling points z where we pick the location of the cavity to be the minimizer of Z(z) on the
sampling grid M. The discrete indicator functions for multiple incident directions and multiple frequen-
cies are defined similarly using equations (5.8) and (5.9), respectively.
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(a) The apple-shaped cavity centered at the origin (b) The apple-shaped cavity shifted to (—1.5,1.5)

Figure 12. Reconstruction results using multilevel ESM for (a) the apple-shaped cavity centered at the origin and (b) the apple-
shaped cavity shifted to (—1.5,1.5), based on a single incident direction d.
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(a) The peanut-shaped cavity centered at the origin (b) The peanut-shaped cavity shifted to (—1.5,1.5)

Figure 13. Reconstruction results using multilevel ESM for (a) the peanut-shaped cavity centered at the origin and (b) the
peanut-shaped cavity shifted to (—1.5,1.5), based on a single incident direction dq.

6.2.1. A fixed incident direction
For our selected numerical examples, we consider a fixed incident direction given by

do = {(cosb,sinf) |§ = 7 /3} = {(1 \/5) }

272

with a full observation aperture S!.

We use 40 observation directions in all the reconstructions. Figures 12—14 present multilevel ESM
reconstructions of the location of apple-, peanut-, and peach-shaped cavities, both centered at the ori-
gin and shifted to (—1.5,1.5), using the configuration S! x {dy} i.e. a single incident direction. Since
the size of the cavity is not known a priori, the multilevel ESM is employed to identify an appropriate
radius R for the sampling disks. For scatterers centered at the origin (0, 0), the initial sampling radius
is set to R=5.0. For cavities centered at (—1.5,1.5), the initial sampling radius is chosen to be R=15.0.
The radius is successively decreased until a satisfactory resolution is achieved. For cavities centered at the
origin, the optimal sampling radius is determined to be R =0.625 after four iterations, while for cavities
centered at (—1.5,1.5), the optimal radius is R =2.5 after one iteration.

6.2.2. Multi-incident directions

Selecting an appropriate radius R for the sampling disks is critical for accurately reconstructing the loca-
tion of clamped cavities when only a single incident direction is used. If R is too large or too small, the
reconstruction accuracy deteriorates. Although multilevel ESM helps estimate a suitable value of R, this
choice becomes less sensitive when far-field data from multiple incident directions are available.
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(a) The peach-shaped cavity centered at the origin

Disk
® _Location by ESM

- 3 2 Rl ] 1 2 ) 4
x

(b) The peach-shaped cavity shifted to (—1.5,1.5)

Figure 14. Reconstruction results using multilevel ESM for (a) the peach-shaped cavity centered at the origin and (b) the peach-
shaped cavity shifted to (—1.5,1.5), based on a single incident direction d.
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(b) Five directions Silnc,l
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(c) Ten directions S}ncz

Figure 15. Reconstruction results of the ESM with multiple incident directions for the peach-shaped cavity centered at
(—1.5,1.5), using a fixed sampling disk radius R = 1. Reconstructions are shown for the following incident apertures: (a) single

Figure 15 shows the reconstruction of the approximate location of the peach-shaped cavity using a
single incident direction dy, as well as 5 and 10 incident directions corresponding to the incident aper-
tures S|, and S} _,, respectively. These incident apertures are defined as

inc, inc,

S}nc’l = {(cosb,sinf) |§ =jr/8,j =0,1,...,4},
Silnc,Z = {(cosb,sinf) |§ =jr/5,j =0,1,...,9}.
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= = Exact Cavity
——— Sampling Disk
® _ Location by ESM

(a) Frequency range [m, 27| (b) Frequency range [, 47|

= = Exact Cavity
—— Sampling Disk
@ _ Location by ESM

(¢) Frequency range [m/3, 5]

Figure 16. Reconstruction results of the multi-frequency ESM for the peach-shaped cavity shifted to (—1.5,1.5) using a single
incident direction dp and a fixed sampling radius R = 1. Each frequency interval [Kmin, £max] is uniformly divided into L =5
wavenumbers. The reconstructions are shown for increasing frequency ranges: (a) [,27], (b) [7,4x], and (c) [w/3,57].

We set the sampling disk radius to R=1, use I =40 observation directions, and apply Tikhonov reg-
ularization with parameter a = 10~*. The wavenumber is fixed at k = 27. As the number of incid-

ent directions increases, the accuracy of the reconstructed cavity location improves, even with a fixed
and non-optimized radius R. Although theorem 5.1 requires |Br(z)| > |D|, we also consider cases with
|Br(2)| < |D| to illustrate the practical performance of the method. Thus, the peach-shaped cavity is res-
caled by a factor slightly larger than 2, making it larger than the fixed sampling disk and allowing us to
examine how the method performs when the disk does not fully enclose the cavity. In these situations,
the use of multiple incident directions improves the localization for a fixed radius R.

6.2.3. Multi-frequency data

We present the implementation of the multiple-frequency ESM for the inverse biharmonic scattering
problem with clamped boundary conditions. For the selected numerical experiments, we consider three
frequency ranges: [Kmin, Kmax] = [, 27], [7, 4], and [7/3,57]. Each interval [Kmin, Smax] is uniformly
divided into L =5 discrete wavenumbers given by

Rmax — Fmin /=1
_— =1,.

, L.
L—1

Re :Hmin+(€+1)

“ey

As in previous examples, we compute the far-field data using the system of boundary integral equations:

u™ (x,d,ke), foreach k¢ € [Kmin,kmax], £=1,...,L,

with a fixed incident direction d. We set I =40 observation directions for each wavenumber and use a
uniform 200 x 200 sampling grid. The Tikhonov regularization parameter is chosen as o = 10~*. The

21



10P Publishing

Inverse Problems 42 (2026) 015002 1 Harris et al

discrete indicator function for multiple-frequency data at a fixed incident direction is given by

L
I(z) = Z'g? (d,ke)|, zeM.
=1

Figure 16 shows the multi-frequency ESM reconstruction of the peach-shaped cavity using a fixed
sampling radius of R = 1. Again, the peach-shaped cavity is rescaled by a factor slightly larger than
2, ensuring that it is larger than the fixed sampling disk so that we can assess the performance of the
method when the disk does not enclose the cavity. Similar results are observed for the apple- and
peanut-shaped cavities. As with multiple incident directions, the advantage of using multi-frequency
data is that the accuracy of the approximate location of the clamped cavity improves at a fixed radius
R as the frequency range, and hence the resolution, increases. The reconstructions remain accurate even
with an arbitrarily chosen fixed radius, making the method less sensitive to the specific choice of R
when more frequency data are available. In contrast, the multilevel ESM iteratively selects an appropri-
ate radius to improve the approximation of the cavity’s location. However, if the radius is chosen too
large or too small, the reconstruction quality may degrade significantly.

7. Conclusion

In this paper, we have presented an alternative justification for the LSM based on far-field data, differ-
ing from [16] by requiring only the exclusion of eigenvalues associated with the clamped transmission
problem. Notably, accurate reconstruction of clamped cavities remains possible even when the wavenum-
ber corresponds to a Dirichlet eigenvalue of the negative Laplacian. The numerical experiments con-
firm the effectiveness of both the LSM and the ESM for the inverse cavity scattering problem of bihar-
monic waves in a Kirchhoff-Love plate, using far-field measurements. Furthermore, the indicator func-
tion exhibits robustness with respect to measurement noise, enabling reliable reconstruction of clamped
cavities from Dirichlet boundary data.

Moreover, both multi-frequency ESM and ESM with multiple incident directions offer significant
advantages by enhancing the accuracy of the approximate location of the clamped cavity, even when the
sampling radius R is fixed and arbitrary. As the frequency range or the number of incident directions
increases, the reconstructions become more accurate. In contrast, when using a single incident direction
at a fixed frequency, the choice of radius R becomes more critical to ensure accurate reconstruction.

In comparison to the implementation of the LSM with near-field data in [3], the use of far-field
data requires fewer measurements. When the observation points are sufficiently far from the cavity, the
far-field pattern of the scattered field #° can be accurately approximated by the far-field pattern of its
Helmbholtz component u;;. This approximation reduces the amount of data needed for reliable recon-
struction, making far-field methods more efficient than their near-field counterparts. We note that in
[3], it is heuristically observed that the LSM with near-field data u’ = uj; is sufficient for reconstructing
clamped cavities with reasonable accuracy. This is because, when the measurement is taken far from the
scatterer, the full scattered field ° is approximately equal to its Helmholtz part, i.e. v’ ~ uj;.

Several open questions remain in the study of inverse biharmonic wave scattering. While this work
focuses on the reconstruction of clamped cavities, future research may investigate the effectiveness of
sampling methods in reconstructing cavities embedded in simply supported or free plates. Moreover,
extending the LSM and ESM frameworks to accommodate penetrable cavities represents an interesting
direction for further study.
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