MA 16020 – Applied Calculus II: Lecture 9 Integration by Partial Fractions

Partial Fractions: Motivation

So far we have learned:

- U-substitution (reverse chain rule)
- Integration by parts (reverse product rule)

Now we will learn **Partial Fractions**: a method for *integrating* rational functions.

A rational function is of the form:

$$f(x) = \frac{P(x)}{Q(x)}$$
, where P and Q are polynomials.

Recall: Adding fractions with different denominators:

$$\frac{1}{2} + \frac{1}{3} = \frac{3}{6} + \frac{2}{6} = \frac{5}{6}.$$

This idea motivates the *partial fraction decomposition*: we write a complicated fraction as a sum of simpler fractions.

Partial Fractions: Functions of x

We can extend the idea to functions of x.

Example 1: Combine the fractions

$$\frac{1}{x-2}+\frac{3}{x-5}.$$

Step 1: Find the least common denominator (LCD):

$$LCD = (x-2)(x-5)$$

Step 2: Combine:

$$\frac{1}{x-2} + \frac{3}{x-5} = \frac{(x-5) + 3(x-2)}{(x-2)(x-5)} = \frac{4x-11}{(x-2)(x-5)}.$$

This shows how a single fraction can be *decomposed* into simpler fractions — the reverse of adding fractions.

Why U-Substitution Fails

Consider the integral:

$$\int \frac{4x-11}{(x-2)(x-5)} \, dx$$

Attempt: Let u = (x-2)(x-5), then

$$du = (2x - 7)dx.$$

Problem: The numerator 4x - 11 does not match du = 2x - 7.

Conclusion: U-substitution alone fails — we need **partial fraction decomposition** to break this into integrable pieces.

Partial Fractions: Integration Example

Recall from the previous example, after combining fractions we have:

$$\frac{4x-11}{(x-2)(x-5)} = \frac{1}{x-2} + \frac{3}{x-5}.$$

Step 1: Integrate term by term

$$\int \frac{4x-11}{(x-2)(x-5)} \, dx = \int \frac{1}{x-2} \, dx + \int \frac{3}{x-5} \, dx$$

Step 2: Apply basic logarithm rule

$$\int \frac{1}{x-a} \, dx = \ln|x-a| + C$$

Step 3: Write the final result

$$\int \frac{4x-11}{(x-2)(x-5)} dx = \ln|x-2| + 3\ln|x-5| + C$$

Observation: Partial fraction decomposition makes the integration straightforward.

Partial Fractions: Four Types

Rational functions: $\frac{P(x)}{Q(x)}$, where P and Q are polynomials.

There are four main types of partial fractions:

- ① Distinct linear factors: $(x a)(x b) \cdots$
- ② Repeated linear factors: $(x a)^n$
- Obstinct irreducible quadratic factors: $(x^2 + bx + c)$
- Repeated irreducible quadratic factors: $(x^2 + bx + c)^n$

Today we will focus on Type 1 and Type 2.

Type 1: Distinct Linear Factors Rule If the denominator factors into distinct linear terms:

$$\frac{P(x)}{(x-a)(x-b)\cdots} = \frac{A}{x-a} + \frac{B}{x-b} + \cdots$$

Constants A, B, \ldots are solved by clearing denominators and either:

- Plugging in convenient values of x, or
- Matching coefficients.

Type 1 Partial Fraction Exercises

Example 2: Find the partial fraction decomposition of the following Type 1 rational functions:

①
$$\frac{3x+5}{(x-1)(x+2)}$$

② $\frac{2x+7}{(x+1)(x-3)}$

Note: Solve for the constants A, B by clearing denominators and either plugging in convenient values of x or matching coefficients.

Type 1 Partial Fraction Integration

Example 3: Use the results of **Example 2** to evaluate the integrals of the following Type 1 rational functions:

Type 2: Repeated Linear Factors

Type 2: Repeated Linear Factors

When the denominator contains powers of the same linear factor, e.g. $(x-a)^n$, the partial fraction decomposition requires a term for each power.

$$\frac{P(x)}{(x-a)^n} = \frac{A_1}{x-a} + \frac{A_2}{(x-a)^2} + \cdots + \frac{A_n}{(x-a)^n}.$$

Key points:

- Each A_i is a constant to solve.
- Multiply through by the denominator and either:
 - Plug in convenient values of x (especially x = a for the highest power term), or
 - Match coefficients.

Next time we will do simple examples to illustrate.

Type 2 Partial Fraction Examples

Find the partial fraction decomposition of the following Type 2 rational functions and evaluate the integrals:

$$\frac{3x+7}{(x-2)^2}$$

Steps:

- Factor the denominator (if repeated linear factor, write separate terms for each power)
- Set up partial fraction decomposition
- Solve for constants
- Integrate each term

(Constants and integration to be done on board)

