MA 16020 – Applied Calculus II: Lecture 8
Integration by Parts II

Integration by Parts Formula

Remark

This is the Integration by Parts formula:

$$\int u\,dv=uv-\int v\,du$$

- u function we **differentiate** (derivative should be simpler)
- dv function we **integrate** (integral should be easy)

Choosing *u* – LATE Rule

LATE: guides which function to differentiate

- L: Logarithmic
- A: Algebraic
- T: Trigonometric
- E: Exponential
 - Pick u = the first function appearing in LATE
 - Pick dv = the remaining function

Example 1 – Definite Integrals

Apply integration by parts to the following definite integrals:

- $\int_0^1 (x^2 + 1)e^{-x} dx$
- Evaluate:

$$\int_0^2 3xe^{2x} dx$$

- Hint: Pick u using LATE.
- Evaluate $uv \int v \, du$ at the bounds.
- Focus on simplifying the algebra and trigonometry.

Solution to (1): $\int_1^e x \ln \sqrt[3]{x} dx$

We simplify first:

$$\ln \sqrt[3]{x} = \ln(x^{1/3}) = \frac{1}{3} \ln x$$

So the integral becomes:

$$\int_1^e x \cdot \frac{1}{3} \ln x \, dx = \frac{1}{3} \int_1^e x \ln x \, dx$$

Use integration by parts:

$$u = \ln x$$
 $dv = x dx$
 $du = \frac{1}{x} dx$ $v = \frac{x^2}{2}$

Solution to (1)

Apply the formula:

$$\int x \ln x \, dx = \frac{x^2}{2} \ln x - \int \frac{x^2}{2} \cdot \frac{1}{x} \, dx = \frac{x^2}{2} \ln x - \int \frac{x}{2} \, dx$$

So,

$$\int x \ln x \, dx = \frac{x^2}{2} \ln x - \frac{x^2}{4}$$

Now evaluate from 1 to e:

$$\frac{1}{3} \left[\left(\frac{e^2}{2} \ln e - \frac{e^2}{4} \right) - \left(\frac{1}{2} \ln 1 - \frac{1}{4} \right) \right]$$

$$= \frac{1}{3} \left[\left(\frac{e^2}{2} - \frac{e^2}{4} \right) - \left(0 - \frac{1}{4} \right) \right] = \frac{1}{3} \left(\frac{e^2}{4} + \frac{1}{4} \right)$$

$$= \frac{1}{12} (e^2 + 1)$$

Solution to (2): $\int_0^1 (x^2 + 1)e^{-x} dx$

Let's apply integration by parts. Pick:

$$u = x^2 + 1$$
 $dv = e^{-x} dx$
 $du = 2x dx$ $v = -e^{-x}$

Use the formula:

$$\int u \, dv = uv - \int v \, du$$
$$= -(x^2 + 1)e^{-x} \Big|_0^1 + \int_0^1 2xe^{-x} \, dx$$

Now evaluate the first term:

$$-(x^2+1)e^{-x}\Big|_0^1 = -[(1^2+1)e^{-1} - (0^2+1)e^{0}] = -[2e^{-1} - 1] = 1 - \frac{2}{e}$$

Now solve the second integral using integration by parts again:

$$\int_0^1 2xe^{-x} dx$$

Solution to (2)

Let:

$$u = 2x$$
 $dv = e^{-x}dx$
 $du = 2 dx$ $v = -e^{-x}$

Then:

$$= -2xe^{-x}\Big|_0^1 + \int_0^1 2e^{-x} dx = -2e^{-1} + \int_0^1 2e^{-x} dx$$
$$= -\frac{2}{e} + 2(1 - \frac{1}{e}) = 2 - \frac{4}{e}$$

Putting it all together:

$$\int_0^1 (x^2 + 1)e^{-x} dx = \left(1 - \frac{2}{e}\right) + \left(2 - \frac{4}{e}\right) = \boxed{3 - \frac{6}{e}}$$