MA 16020: Lesson 18 Volume By Revolution Shell Method Pt 2: Rotation around any non-Axis

RECAP: When should I use Shell Method? How do I use Shell Method?

If you find solving for x or y, for either Disk or Washer Method, is hard

⇒ Shell Method

For rotation around x-axis:

$$V = 2\pi \int_{c}^{d} y \cdot (Right - Left) dy$$

For rotation around y-axis:

$$V = 2\pi \int_{0}^{b} x \cdot (Top - Bottom) dx$$

		Axis of Rotation	
		x-axis	y-axis
M et ho d	Disk/Washer	dx	dy
	Shells	dy	dx

What happens if we are revolving around non-Axes (like x = a or y = b)?

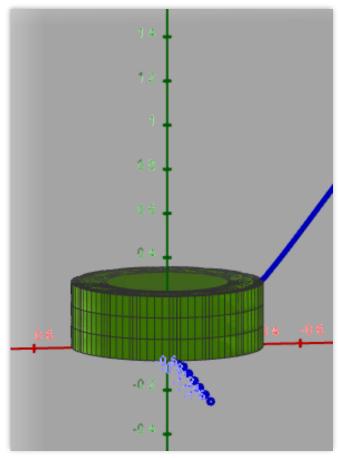
Answer: everything stays the same except for the RADIUS.

How did I find the radius, r(x), last class?

- O To find r(x), we need to find the distance of the shell from the axis of rotation
- The shell is x units away from the y-axis. So, r(x) = x
- O So, the formula:

$$V = 2\pi \int_{a}^{b} r(x) \cdot (Top - Bottom) dx$$

$$V = 2\pi \int_{a}^{b} x \cdot (Top - Bottom) dx$$



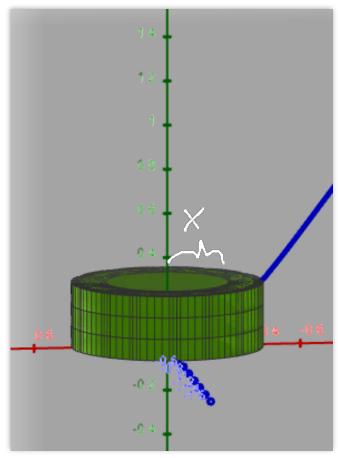
https://www.geogebra.org/m/jqfyndpu

How did I find the radius, r(x), last class?

- O To find r(x), we need to find the distance of the shell from the axis of rotation
- The shell is x units away from the y-axis. So, r(x) = x
- O So, the formula:

$$V = 2\pi \int_{a}^{b} r(x) \cdot (Top - Bottom) dx$$

$$V = 2\pi \int_{a}^{b} x \cdot (Top - Bottom) dx$$



https://www.geogebra.org/m/jqfyndpu

What is r(x) when we are rotating around something other than y-axis?

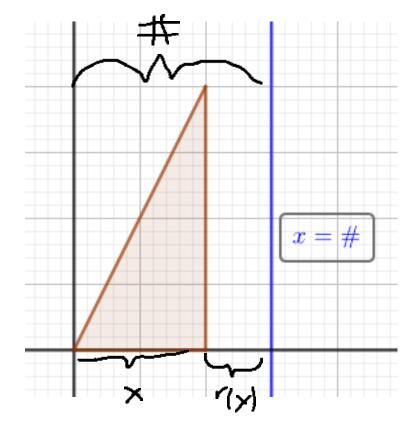
- O Again, to find r(x), we need to find the distance of the shell from the axis of rotation
- From the picture we see, # is the distance from the y-axis and the line of rotation. So,

$$x + r(x) = \#$$
 \Rightarrow $r(x) = \# - x$

If the axis of rotation is on the right of your region,

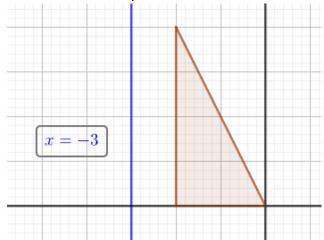
$$V = 2\pi \int_{a}^{b} r(x) \cdot (Top - Bottom) dx$$

$$V = 2\pi \int_{a}^{b} (\# - x) \cdot (Top - Bottom) dx$$



What if the axis of rotation is on the left of the region? Is it the same formula?

Take the example below:



- If r(x) = # x, then r(x) = -3 x.
 - Choose a value in the region (i.e. triangle).
 - Is r(x) still positive? No.

O Almost.... If the axis of rotation x = # is on the left, then

$$r(x) = x - \#$$

- Why? The radius needs to always positive
- If the axis of rotation is on the left of your region,

$$V = 2\pi \int_{a}^{b} r(x) \cdot (Top - Bottom) dx$$

$$V = 2\pi \int_{a}^{b} (x - \#) \cdot (Top - Bottom) dx$$

What if r(x) = x - #? Yes.

Overall, the Shell Method Formulas around any non-axis are...

O Rotating around x =

O If the axis of rotation is on the right of your region,

$$V = 2\pi \int_{a}^{b} (\# - x) \times (Top - Bottom) \ dx$$

O If the axis of rotation is on the left of your region,

$$V = 2\pi \int_{a}^{b} (x - \#) \times (Top - Bottom) \ dx$$

O Rotating around y = #

O If the axis of rotation is above of your region,

$$V = 2\pi \int_{a}^{b} (\# - y) \times (Right - Left) dy$$

O If the axis of rotation is below of your region,

$$V = 2\pi \int_{a}^{b} (y - \#) \times (Right - Left) dy$$

Example 1: Using the **Shell Method**, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at (0,0), (2,0), and (2,3) about the line indicated

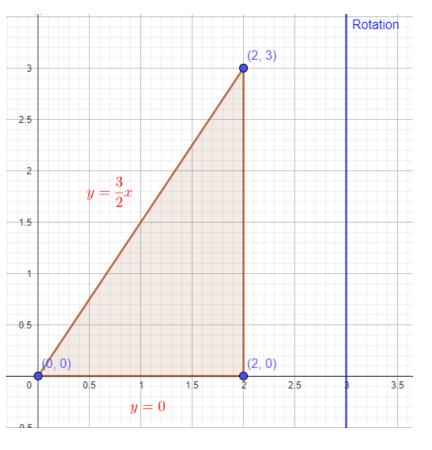
a) about x = 3

Example 1: Using the **Shell Method**, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at (0,0), (2,0), and (2,3)

about the line indicated

a) about x = 3

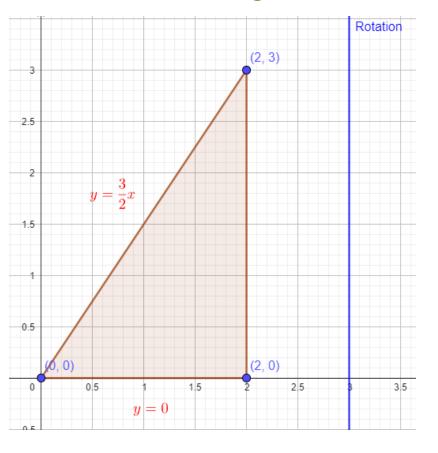
Draw the region.



Example 1: Using the **Shell Method**, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at (0,0), (2,0), and (2,3) about the line indicated

a) about x = 3

Draw the region.



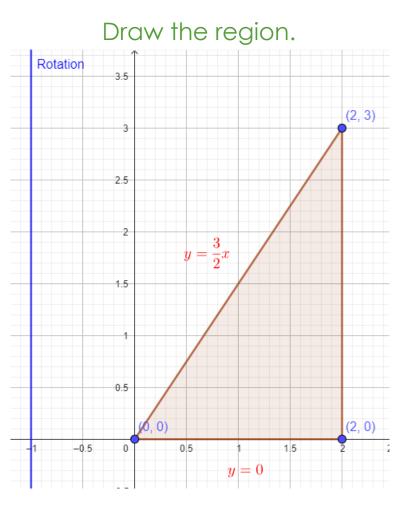
Example 1: Using the **Shell Method**, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at (0,0), (2,0), and (2,3) about the line indicated

b) about
$$x = -1$$

Example 1: Using the **Shell Method**, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at (0,0), (2,0), and (2,3)

about the line indicated

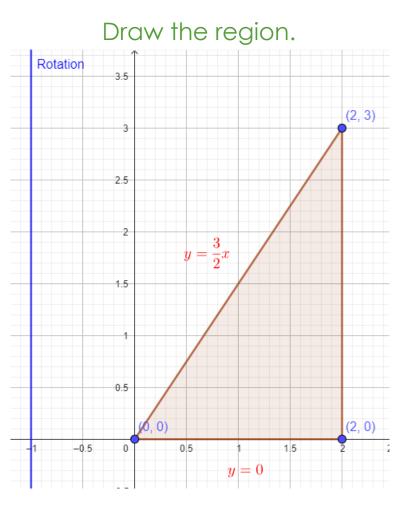
b) about x = -1



Example 1: Using the **Shell Method**, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at (0,0), (2,0), and (2,3)

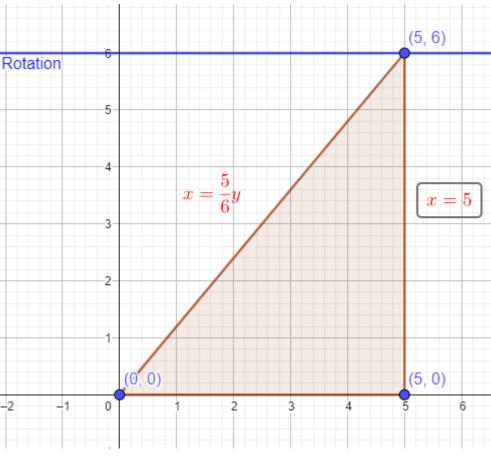
about the line indicated

b) about x = -1



Example 2: Using the **Shell Method**, set up the integral that represents the volume of solid obtained by revolving the region defined by a triangle with vertices at (0,0), (5,0), and (5,6) about the line indicated

a) About y = 6



$$y = \sqrt{x}$$
, $y = 0$, and $x = 4$

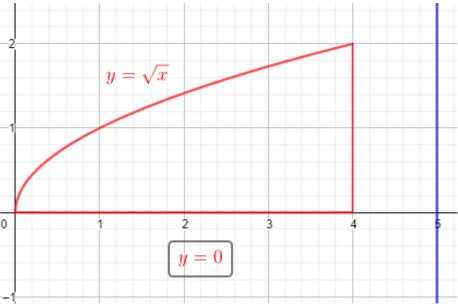
Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

a) about
$$x = 5$$

$$y = \sqrt{x}$$
, $y = 0$, and $x = 4$

Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

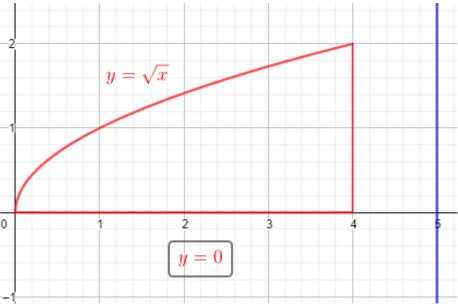
a) about x = 5



$$y = \sqrt{x}$$
, $y = 0$, and $x = 4$

Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

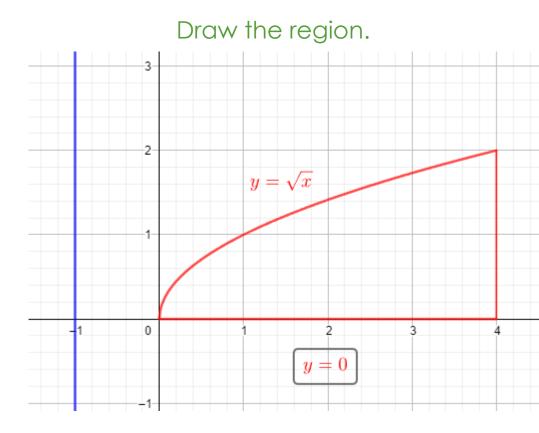
a) about x = 5



$$y = \sqrt{x}$$
, $y = 0$, and $x = 4$

Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

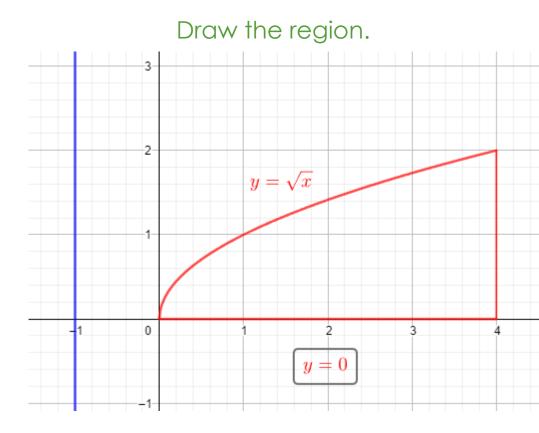
b) about
$$x = -1$$



$$y = \sqrt{x}$$
, $y = 0$, and $x = 4$

Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

b) about
$$x = -1$$



$$x = y^2 + 1$$
, and $x = 2$

Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

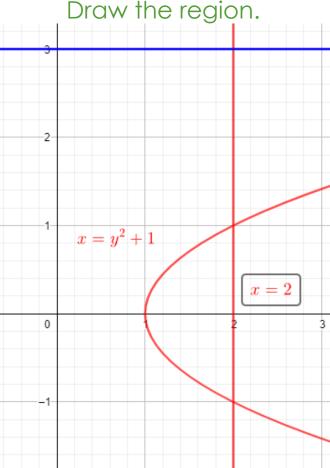
a) about
$$y = 3$$

$$x = y^2 + 1$$
, and $x = 2$

$$x = 2$$

Set up the integral that represents the volume of solid obtained by the rotating the region using the Shell Method

a) about y = 3

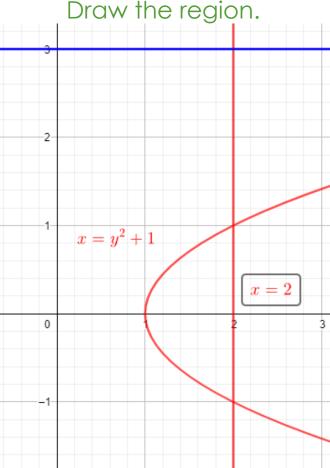


$$x = y^2 + 1$$
, and $x = 2$

$$x = 2$$

Set up the integral that represents the volume of solid obtained by the rotating the region using the Shell Method

a) about y = 3



$$x = y^2 + 1$$
, and $x = 2$

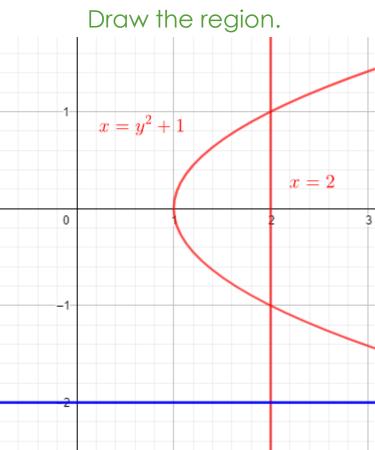
Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

b) about
$$y = -2$$

$$x = y^2 + 1$$
, and $x = 2$

Set up the integral that represents the volume of solid obtained by the rotating the region using the **Shell Method**

b) about
$$y = -2$$



When do we apply Disk Method or Washer Method or Shell Method?

When the region "hugs" the axis of rotation

⇒ Disk Method

O When there is a "gap" between the region and axis of rotation

⇒ Washer Method

O But if you find solving for x or y, in either method, is hard

⇒ Shell Method

		Axis of Rotation	
		x-axis or	y-axis or
M et ho d	Disk/Washer	dx	dy
	Shells	dy	dx

Formulas from Lessons 14 and 15 and 17 Rotation around x-axis or y-axis

For rotation around x-axis:

O Disk Method:

$$V = \pi \int_{a}^{b} [f(x)]^{2} dx$$

Washer Method:

$$V = \pi \int_{a}^{b} \left(R^2 - r^2 \right) \, dx$$

O Shell Method:

$$V = 2\pi \int_{c}^{d} y \cdot (Right - Left) \, dy$$

For rotation around y-axis:

O Disk Method:

$$V = \pi \int_{c}^{d} [g(y)]^{2} dy$$

Washer Method:

$$V = \pi \int_{c}^{d} \left(R^2 - r^2 \right) \, dy$$

Shell Method:

$$V = 2\pi \int_{a}^{b} x \cdot (Top - Bottom) \ dx$$

Formulas from Lesson 15 and 18 Rotation around any non-Axis Formulas

For rotation around the line x = #:

O Disk Method:

$$V = \pi \int_{a}^{b} [f(x) - \#]^2 dx$$

Washer Method:

$$V = \pi \int_{a}^{b} \left[(R - \#)^{2} - (r - \#)^{2} \right] dx$$

Shell Method:

O If the axis of rotation is on the left of your region,

$$V = 2\pi \int_{a}^{b} (x - \#) \times (Top - Bottom) \ dx$$

O If the axis of rotation is on the right of your region,

$$V = 2\pi \int_{a}^{b} (\# - x) \times (Top - Bottom) \ dx$$

Note: That these formulas work for the case of x-axis (y = 0) and y-axis (x = 0).

Formulas from Lesson 15 and 18 Rotation around any non-Axis Formulas

For rotation around the line y = #:

O Disk Method:

$$V = \pi \int_{c}^{d} \left[g(y) - \# \right]^{2} dy$$

Washer Method:

$$V = \pi \int_{c}^{d} \left[(R - \#)^{2} - (r - \#)^{2} \right] dy$$

O Shell Method:

O If the axis of rotation is below your region,

$$V = 2\pi \int_{a}^{b} (y - \#) \times (Right - Left) dy$$

O If the axis of rotation is above your region,

$$V = 2\pi \int_{a}^{b} (\# - y) \times (Right - Left) dy$$

Note: That these formulas work for the case of x-axis (y = 0) and y-axis (x = 0).