Shell Method Solutions: Lesson 17-18

Example 1

Problem: Find the volume obtained by revolving the region bounded by

$$y = 2x^2 - x^3 \quad \text{and} \quad y = 0$$

about the y-axis.

Solution:

- The region lies between x = 0 and x = 2 (where $y = 2x^2 x^3 = 0$).
- Using the shell method, radius r = x, height $h = 2x^2 x^3$.

$$V = 2\pi \int_0^2 rh \, dx = 2\pi \int_0^2 x (2x^2 - x^3) \, dx = 2\pi \int_0^2 (2x^3 - x^4) \, dx$$
$$V = 2\pi \left[\frac{2x^4}{4} - \frac{x^5}{5} \right]_0^2 = 2\pi \left(8 - \frac{32}{5} \right) = 2\pi \left(\frac{8}{5} \right) = \frac{16\pi}{5}.$$
$$V = \frac{16\pi}{5}$$

Example 2

Problem: Find the volume obtained by revolving the region bounded by

$$y = \frac{5}{x^3}$$
, $y = 0$, $x = 1$, $x = 5$

about the y-axis.

Solution:

- The radius is r = x.
- The height is $h = \frac{5}{x^3}$.

$$V = 2\pi \int_{1}^{5} rh \, dx = 2\pi \int_{1}^{5} x \left(\frac{5}{x^{3}}\right) dx = 10\pi \int_{1}^{5} x^{-2} \, dx$$
$$V = 10\pi \left[-x^{-1}\right]_{1}^{5} = 10\pi \left(-\frac{1}{5} + 1\right) = 10\pi \left(\frac{4}{5}\right) = 8\pi.$$
$$V = 8\pi$$

Example 3

Problem: Find the volume obtained by revolving the region bounded by

$$x = y^2 - 2y \quad \text{and} \quad x = 4y - y^2$$

about the x-axis.

Solution:

- Intersections: $y^2 2y = 4y y^2 \implies 2y^2 6y = 0 \implies y = 0, 3$.
- The radius is r = y, the height is

$$h = (4y - y^2) - (y^2 - 2y) = 6y - 2y^2.$$

$$V = 2\pi \int_0^3 rh \, dy = 2\pi \int_0^3 y(6y - 2y^2) \, dy = 2\pi \int_0^3 (6y^2 - 2y^3) \, dy$$
$$V = 2\pi \left[2y^3 - \frac{y^4}{2} \right]_0^3 = 2\pi \left(54 - 40.5 \right) = 2\pi (13.5) = 27\pi.$$
$$\boxed{V = 27\pi}$$

Example 4 (Set-Up and Evaluation)

Problem: Set up the integral for the volume of the region bounded by

$$y = 4x, \quad y = 0, \quad x = 10$$

when the region is revolved about the **y-axis**.

(a) Disk/Washer method:

For a fixed y (with $0 \le y \le 40$) the horizontal slice runs from $x_{\text{left}} = y/4$ to $x_{\text{right}} = 10$, so

$$V = \pi \int_0^{40} \left(10^2 - \left(\frac{y}{4} \right)^2 \right) dy = \pi \int_0^{40} \left(100 - \frac{y^2}{16} \right) dy = \frac{8000\pi}{3}.$$

(b) Shell method:

Vertical shells at $x \in [0, 10]$ have radius r = x and height h = 4x, so

$$V = 2\pi \int_0^{10} x(4x) \, dx = 8\pi \int_0^{10} x^2 \, dx = \frac{8000\pi}{3}.$$

Lesson 18 – Shell Method: Revolving Around Lines

Problem: Using the **Shell Method**, set up and evaluate the integral that represents the volume of the solid obtained by revolving the region bounded by the triangle with vertices

about the given lines.

Step 1. Equation of the slanted side

The slanted side passes through (0,0) and (2,3), so its slope is

$$m = \frac{3-0}{2-0} = \frac{3}{2}.$$

Hence, the equation of the line is

$$y = \frac{3}{2}x.$$

(a) Revolve about x = 3

Using the Shell Method:

$$V = 2\pi \int_0^2 (\text{radius})(\text{height}) dx.$$

Radius: r(x) = 3 - xHeight: $h(x) = \frac{3}{2}x$

$$V = 2\pi \int_0^2 (3-x) \left(\frac{3}{2}x\right) dx$$
$$= 3\pi \int_0^2 x(3-x) dx$$
$$= 3\pi \int_0^2 (3x-x^2) dx$$
$$= 3\pi \left[\frac{3x^2}{2} - \frac{x^3}{3}\right]_0^2$$
$$= 3\pi \left(6 - \frac{8}{3}\right)$$
$$= 3\pi \left(\frac{10}{3}\right) = 10\pi.$$
$$V = 10\pi$$

(b) Revolve about x = -1

Radius: r(x) = x - (-1) = x + 1Height: $h(x) = \frac{3}{2}x$

$$V = 2\pi \int_0^2 (x+1) \left(\frac{3}{2}x\right) dx$$
$$= 3\pi \int_0^2 (x^2 + x) dx$$
$$= 3\pi \left[\frac{x^3}{3} + \frac{x^2}{2}\right]_0^2$$
$$= 3\pi \left(\frac{8}{3} + 2\right)$$
$$= 3\pi \left(\frac{14}{3}\right) = 14\pi.$$
$$\boxed{V = 14\pi}$$

0.1 Example 2

Problem 2: Using the **Shell Method**, find the volume of the solid obtained by revolving the region bounded by the triangle with vertices

about the horizontal line y = 6.

Step 1. Equation of the slanted side

The slanted side passes through (0,0) and (5,6), so its slope is

$$m = \frac{6-0}{5-0} = \frac{6}{5}.$$

Hence, the equation of the line is

$$y = \frac{6}{5}x.$$

Step 2. Shell Method Setup

- Revolving about a horizontal line $y=6 \to \text{use **horizontal shells**}$, integrate w.r.t. y. - For a typical shell at height y:

Radius:
$$r(y) = 6 - y$$

Height:
$$h(y) = x_{\text{right}} - x_{\text{left}} = 5 - \frac{5}{6}y$$

- Thickness: $dy, y \in [0, 6]$.

$$V = 2\pi \int_0^6 (6 - y) \left(5 - \frac{5}{6} y \right) dy$$

Step 3. Simplify the integrand

$$(6-y)\left(5-\frac{5}{6}y\right) = \frac{5}{6}y^2 - 10y + 30$$

Step 4. Integrate and evaluate

$$\int_0^6 \left(\frac{5}{6}y^2 - 10y + 30\right) dy = \frac{5}{18}y^3 - 5y^2 + 30y\Big|_0^6 = 60$$
$$V = 2\pi \cdot 60 = \boxed{120\pi}$$

Summary:

Axis of Revolution	Method	Volume
y = 6	Shell	120π

Lesson 18 — Example 3

Problem: Using the **Shell Method**, find the volume of the solid obtained by revolving the region bounded by

$$y = \sqrt{x}, \quad y = 0, \quad x = 4$$

about the vertical line $\mathbf{x} = \mathbf{5}$.

Step 1. Shell Method Setup

- Revolving about x=5 (vertical line) \Rightarrow use **vertical shells**, integrate w.r.t. x. - Radius: r(x)=5-x - Height: $h(x)=\sqrt{x}-0=\sqrt{x}$ - Thickness: $dx, x \in [0,4]$

$$V = 2\pi \int_0^4 (5 - x) \sqrt{x} \, dx$$

Step 2. Simplify and integrate

$$V = 2\pi \int_0^4 \left(5x^{1/2} - x^{3/2}\right) dx = 2\pi \left[\frac{10}{3}x^{3/2} - \frac{2}{5}x^{5/2}\right]_0^4 = 2\pi \left(\frac{80}{3} - \frac{64}{5}\right) = 2\pi \cdot \frac{208}{15} = \frac{416\pi}{15}$$

$$V = \frac{416\pi}{15}$$

Summary:

Axis of Revolution	Method	Volume
x = 5	Shell	$\frac{416\pi}{15}$

Example 3(b)

Problem: Using the **Shell Method**, find the volume of the solid obtained by revolving the region bounded by

$$y = \sqrt{x}, \quad y = 0, \quad x = 4$$

about the vertical line $\mathbf{x} = -1$.

Step 1. Shell Method Setup

- Revolving about x=-1 (vertical line) \Rightarrow use **vertical shells**, integrate w.r.t. x. - Radius: r(x)=x-(-1)=x+1 - Height: $h(x)=\sqrt{x}$ - Thickness: $dx, x \in [0,4]$

$$V = 2\pi \int_0^4 (x+1)\sqrt{x} \, dx = 2\pi \int_0^4 (x^{3/2} + x^{1/2}) \, dx$$

Step 2. Integrate and evaluate

$$\int_0^4 x^{3/2} dx = \frac{64}{5}, \quad \int_0^4 x^{1/2} dx = \frac{16}{3}$$

$$V = 2\pi \left(\frac{64}{5} + \frac{16}{3}\right) = 2\pi \cdot \frac{272}{15} = \frac{544\pi}{15}$$

$$V = \frac{544\pi}{15}$$

Summary:

Axis of Revolution	Method	Volume
x = -1	Shell	$\frac{544\pi}{15}$

Lesson 18 — Example 4

Problem: Using the **Shell Method**, find the volume of the solid obtained by revolving the region bounded by

$$x = y^2 + 1, \quad x = 2$$

about the horizontal lines:

- (a) y = 3
- (b) y = -2

(a) Revolve about y = 3

- Horizontal shells \to integrate w.r.t $y,\,y\in[-1,1]$ - Radius: r(y)=3-y - Height: $h(y)=2-(y^2+1)=1-y^2$

$$V = 2\pi \int_{-1}^{1} (3-y)(1-y^2) \, dy = 2\pi \int_{-1}^{1} (y^3 - 3y^2 - y + 3) \, dy$$
$$\int_{-1}^{1} (y^3 - 3y^2 - y + 3) \, dy = 4 \quad \Rightarrow \quad V = 2\pi \cdot 4 = \boxed{8\pi}$$

(b) Revolve about y = -2

- Radius:
$$r(y) = y + 2$$
 - Height: $h(y) = 1 - y^2$

$$V = 2\pi \int_{-1}^{1} (y+2)(1-y^2) \, dy = 2\pi \int_{-1}^{1} (-y^3 - 2y^2 + y + 2) \, dy$$

$$\int_{-1}^{1} (-y^3 - 2y^2 + y + 2) \, dy = \frac{7}{3} \quad \Rightarrow \quad V = 2\pi \cdot \frac{7}{3} = \boxed{\frac{14\pi}{3}}$$

Summary:

Axis of Revolution	Method	Volume
y=3	Shell	8π
y = -2	Shell	$\frac{14\pi}{3}$