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The Inverse Problem / Motivation

Send a wave and observe the reflected wave by an unknown obstacle

Question: What information about the obstacle can one extract from the
observed wave?

Type of waves: flexural waves observed in thin elastic plate bending (modelled
by the biharmonic wave equation)

Applications: nondestructive testing and designing devices for remote sensing,
energy harvesting, and vibration isolation via acoustic black hole (ABHs).
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Examples of Applications

infrastructure imaging, elastic cloaking, vibration (noise) control, non-destructive
testing,...

Figure: Chladni Plates

Vibration noise control
via Acoustic Black Hole

Design

Clamped plates (objects with edges fixed or “clamped” in place) are often used in
experiments where vibrations are measured using TV holography for nondestructive
testing. Accumulation of sand at nodes of vibrating plate reveals resonance patterns
(Chladni Plates)

Acoustic black holes reduce structural vibration and sound pressure control (civil
transportation, underwater vehicles, energy harvesting)
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Sampling Methods

Examples of sampling methods. Linear Sampling Method (Colton-Kirsch, 1996),
Factorization Method (Kirsch 1998), Probe Method (Potthast, 2001), Reciprocity
Gap Method (Colton-Haddar, 2005),...)

Principle: the idea is to construct an indicator test function I(z) that will test
whether a sampling point z is in the interior or exterior of the scatterer.

(+) Non-iterative, the computation of I does not require a forward solver.
(-) Requires a large amount of multi-static data (many transmitters-receivers).
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Biharmonic Wave Model

1 D ⊂ R2 is a clamped (fixed) cavity with ∂D ∈ C∞(R2) and connected
complement R2 \D

2 The cavity receives illumination from the incident plane wave ui(x) = eiκx·d

3 The out-of-displacement governed by classical Kirchhoff-Love Model in the purely
bending case

The total field u = ui + us ∈ H2
loc(R

2) satisfies, with r = |x|:

The Biharmonic wave equation

∆2u− κ4u = 0 in R2 \D,

Clamped boundary Conditions

u = 0, ∂νu = 0 on ∂D,

The Sommerfield radiation conditions (us,∆us are outgoing towards infinity)

lim
r→∞

√
r (∂ru

s − iκus) = 0, lim
r→∞

√
r (∂r∆us − iκ∆us) = 0.

DSP. Determine the scattered field us from the given bounded domain D ⊂ R2 and
the differential equation that governs the wave motion.
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Biharmonic Wave Decomposition

Introduce the following two auxiliary functions:

us
H = −

1

2κ2
(∆us − κ2us), us

M =
1

2κ2
(∆us + κ2us)

us
H is the Helmholtz component of us and us

M is the modified/anti-Helmholtz
component of us such that

us = us
H + us

M , ∆us = κ2(us
M − us

H)

us
H and us

M satisfy the Helmholtz equation and anti-Helmholtz equation respectively.
Due to the factorization of the biharmonic wave operator

∆2us − κ4us = (∆− κ2)(∆ + κ2)us = (∆+ κ2)(∆− κ2)us,

we obtain

∆us
H + κ2us

H = 0, ∆us
M − κ2us

M = 0 in R2 \D.
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Coupled Scattering Problem

We can reformulate the (DSP) as a coupled system with coupled boundary conditions
as follows:

∆us
H + κ2us

H = 0, ∆us
M − κ2us

M = 0 in R2 \D,

us
H + us

M = −ui, ∂νu
s
H + ∂νu

s
M = −∂νu

i on ∂D,

lim
r→∞

√
r (∂ru

s
H − iκus

H) = 0, lim
r→∞

√
r (∂ru

s
M − iκus

M ) = 0, r = |x|.
(1)

This decomposition has two advantages:

1 We now have a second-order system instead of a fourth-order problem.

2 The anti-Helmholtz part of the scattered field us
M has nice asymptotic behavior

when r → ∞. It has exponential decay! (also called ‘evanescent component’ in
literature)

Asymptotic behaviors as r → ∞ are

|us
H | = O

(
1
√
r

)
, |us

M | = O
(
e−κr

√
r

)
.

This is a consequence of their respective Fourier-Hankel series expansions and Bessel
function asymptotics.
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Well-posedness of Biharmonic Clamped Cavity Scattering Problem

The well-posedness of the biharmonic clamped cavity scattering problem (DSP) has
been well studied:

Variational Method & Riesz-Fredholm theory
Bourgeouis, L. and Hazard, C. (2020), On Well-Posedness of Scattering Problems
in a Kirchhoff-Love Infinite Plate, SIAM Journal on Applied Mathematics 80(3),
1546-1556.

Boundary Integral Equation Method & Riesz-Fredholm Theory
Li, P. and Dong, H. (2024), A Novel Boundary Integral Formulation for the
Biharmonic Wave Scattering Problem, Journal of Scientific Computing 98(42),
1-29.
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Inverse Clamped Cavity Scattering Problem

The outgoing scattered field, also known as the radiating solution, satisfies

us(x) =
eiκr
√
r
u∞(x̂) +O

(
1

r3/2

)
as r = |x| → ∞, x̂ = x/r

u∞ : S1 → C defined on the unit circle is called the far-field pattern.

We define the far-field operator F : L2(S1) → L2(S1) by

(Fg)(x̂) =

∫
S1

u∞(x̂, d)g(d) ds(d), x̂ ∈ S1.

Fg = u∞
g , where u∞

g is the far-field pattern of the scattered field us
g with

incident wave vg(x) :=

∫
S1

g(d)eiκx·d ds(d) (Hergotz wave function)

The operator F is compact and has infinitely many eigenvalues.

ISP. Given F for a range of wave numbers κ (so given far-field data
{u∞(x̂, d) : x̂, d ∈ S1}), determine the shape and location clamped cavity D in a thin
elastic plate.
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Far-Field Patterns Coincide / Uniqueness Result

Because of the exponential decay of the evanescent part us
M and ∂νus

M , the far-field
pattern contains only information about the Helmholtz component, thus,

u∞(x̂) = u∞
H (x̂),

up to a constant depending on κ. By Rellich’s lemma and exp. decay of us
M , we note

the following:

FACT. u∞ = 0 =⇒ us
H = 0 in R2 \D.

The anti-Helmholtz component us
M generally does not vanish outside of D.

ISP. Given: Far-Field data {u∞
H (x̂, d) : x̂, d ∈ S1}. Want: shape and location of the

clamped cavity D. (Note: the clamped cavity can be uniquely determined!)

Theorem (P. Li & H. Dong, 2023)

Let D1 and D2 be two cavities meeting the clamped boundary conditions, with
corresponding far-field patterns u∞

1 and u∞
2 satisfying

u∞
1 (x̂, d) = u∞

2 (x̂, d), ∀x̂, d ∈ S1.

Then D1 = D2.
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Results on Inverse Shape Problem for Biharmonic Plate Equation

L. Bourgeouis & A. Recoquillay (2020): recovery of clamped cavities and cavities
in a free plate with the linear sampling method with near-field measurements
(boundary measurements)
Disadvantage: uses far more multistatic data, namely scattered field and normal
derivative of scattered field for point source and dipole

Y. Chang & Y. Guo (2023): recovery of clamped cavities in a thin elastic plate
with near field measurements via the domain decomposition method
(optimization method)

I. Harris, P. Li, & H. Lee (2024): recovery and resolution analysis of clamped
cavities with the direct sampling method

A. Karageorghis & D. Lesnic (2024): method of fundamental solutions (iterative
method) for recovering clamped and free plate cavities with near field
measurements
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Idea Behind Linear Sampling Method

Qualitative/Sampling Scheme
Goal: want to

recover shape and location of the cavity using an indicator function based on an
integral equation solution

Sampling: Collect the far-field data u∞ and solve an ill-posed linear integral equation
for each sample point z

Principle of the Linear Sampling Method (LSM): Characterize the cavity D using the
range of the far field operator.
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Principle of LSM - The Far-Field Equation

Far-Field Equation.

Fgz(x̂) = ϕz(x̂), ϕz(x̂) = −
1

2κ2

eiπ/4

√
8πκ

e−iκx·z , z ∈ R2, gz ∈ L2(S1)

ϕz(x̂). far-field pattern of the point source Φ(·, z) centered at sampling point z

Φ(·, z) satisfies (∆2 − κ4)Φ(·, z) = (∆− κ2)(∆ + κ2)Φ(·, z) = −δ(· − z) in R2

with

Φ(x, z) =
i

8κ2

(
H1

0 (κ|x− z|) +
2i

π
K0(κ|x− z|)

)
, x ̸= z

where H
(1)
0 and K0 are the Hankel functions of the first kind and MacDonald’s

function, respectively.

F is a compact operator, so the far-field equation is ill-posed. In general, a
solution gz does not exist.

⇒ we can regularize the equation to find an approximate solution gαz . The
asymptotic behavior of its energy norm will indicate which points z ∈ D.
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Approximate Solvability Condition of Far-Field Equation

Want an approximate solvability condition for the far-field equation:

Problem

Approximate Solvability Condition: want to show F has dense range in L2(S1); that
is,

Range F ||·||
L2(S1) = L2(S1)

By Hahn-Banach Theorem, this is equivalent to showing the adjoint operator F∗ is
injective. By a result called the reciprocity relation, the approximate solvability
condition reduces to showing F is injective.

Lemma (Reciprocity Relation)

u∞(x̂, d) = u∞(−d,−x̂) for every x̂, d ∈ S1.

Why is this useful? This relation can be used to show F∗g = RFRg where
(Rf)(x̂) := f(−x̂). Only Need: F is injective for approximate solvability.
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Helpful Auxiliary Operators to Prove Injectivity

Herglotz wave operator:

H : L2(S1) → H3/2(∂D)×H1/2(∂D)

Hg = (vg , ∂νvg)
⊤
∣∣∣
∂D

, vg(x) =

∫
S1

eiκx·dg(d) ds(d)

Linearity of the map: ui 7→ u∞

⇒ Fg is the far-field associated with the incident field vg

Therefore: Fg = G(−Hg)

Where G : H3/2(∂D)×H1/2(∂D) → L2(S1) is the data-to-pattern operator

G(h1, h2)
⊤ := w∞, w∞ = far field pattern of w


∆2w − κ4w = 0 in R2 \D,

w|∂D = h1, ∂νw|∂D = h2,

lim
r=|x|→∞

√
r (∂rw − iκw) = 0, lim

r=|x|→∞

√
r (∂r∆w − iκ∆w) = 0
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On Auxiliary Operator G

G(h1, h2)⊤ := w∞

1 w∞ = far-field pattern of the unique radiating solution w ∈ H2
loc(R

2 \D)
satisfying

∆2w − κ4w = 0 in R2 \D,

w|∂D = h1, ∂νw|∂D = h2,

lim
r=|x|→∞

√
r (∂rw − iκw) = 0, lim

r=|x|→∞

√
r (∂r∆w − iκ∆w) = 0

2 To show G is injective, we need to assume that κ2 ̸= eigenvalue of the
homogeneous transmission problem (HTP) given by the pair (p, q) = (wM , ui)
satisfying 

∆p− κ2p = 0 in R2 \D, ∆q + κ2q = 0 in D,

p = q, ∂νp = ∂νq on ∂D,

lim
r=|x|→∞

√
r (∂rp− iκp) = 0,

(2)
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Approximate Solvability of the Far-Field equation

Lemma.

1 The auxiliary operator G is compact with a dense range in L2(S1). Moreover, if
κ2 ̸= an eigenvalue of the (HTP), then G is injective.

2 We have the following range characterization of the clamped cavity D:

z ∈ D ⇐⇒ ϕz(x̂) ∈ Range(G).

3 H is compact and injective.

4 If κ2 ̸= eigenvalue of the (HTP), then by superposition F is injective. Thus, F
has dense range in L2(S1).

The main takewaway. By omitting certain eigenvalues of F , we can approximately
solve (using regularization) the far-field equation for gz . We can characterize the
cavity D by using the asymptotic behavior of the solution gz for different sampling
points z.
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Theoretical Justification of LSM

Main Theorem. Assume κ2 ̸= eigenvalue of the (HTP).

1 Suppose z ∈ D. Given ϵ > 0 there exists an approximate solution gαz ∈ L2(S1) to
the far-field equation such that

||Fgαz − ϕz ||L2(S1) < ϵ.

Furthermore, ||gαz ||L2(S1) is unbounded as z → ∂D.

2 Suppose z /∈ D. Then for any gαz ∈ L2(S1) such that

lim
α→0

||Fgαz − ϕz ||L2(S1) = 0,

it holds that

lim
α→0

||gαz ||L2(S1) = ∞.

Choice of indicator function: I(z) = ||gz ||−1
L2(S1).

If z ∈ D, we expect I(z) > 0.

If z /∈ D, we expect I(z) = 0. As z → ∂D, I(z) → 0.
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Algorithmic Aspects

A regularization is needed to solve the far-field equation, e.g., we used Tikhonov
reg. with α = 10−6 in all reconstructions

(αI + F ∗
d Fd)g

α
z = F ∗

d ϕz

Dimension of discretized matrix is based on the number N of sources/receivers.
We selected a 250-by-250 grid for each construction.

Example: 30 sources/receivers yields a 30-by-30 matrix Fd

Fd = [u∞(x̂i, ŷj)]
d
i,j=1. Discretize so that

x̂i = ŷj = (cos θi, sin θj) , θi = 2π(i− 1)/d, i = 1, . . . , d.

We used Li and Dong’s boundary integral equation method to approximate the
discretized far-field operator Fd.

Add noise to test the stability of the LSM

F δ
d = [Fi,j(1 + δEi,j)]

d
i,j=1 , ||E||2 = 1.

E ∈ Cd×d is a matrix with random entries, 0 < δ ≪ 1 relative noise level
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Numerical Result: Recovering the Apple-Shaped Cavity

Figure: Recovering the Apple-Shaped Cavity with
κ = 2π; no noise; 30 incident and observation
directions; 250 × 250 grid

Figure: Recovering the Apple-Shaped Cavity with
κ = 2π; noise δ = 0.02; 30 incident and
observation directions; 250 × 250 grid

Parametrization of Apple. γ(t) =
0.55(1+0.9 cos t+0.1 sin 2t

1+0.75 cos t
(cos t, sin t)
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Numerical Result: Recovering the ∂D ∈ C2 Peach-Shaped Cavity

Figure: Recovering the Peach-Shaped Cavity with
κ = π; no noise; 30 incident and observation
directions; 250 × 250 grid

Figure: Recovering the Peach-Shaped Cavity with
κ = π; noise δ = 0.05; 30 incident and
observation directions; 250 × 250 grid

Parametrization of Peach. γ(t) = 0.22(cos2 t
√
1− sin t+ 2)(cos t, sin t)
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Numerical Result: Recovering the Peanut-Shaped Cavity

Figure: Recovering the Peanut-Shaped Cavity
with κ = π; no noise; 30 incident and
observation directions; 250 × 250 grid

Figure: Recovering the Peanut-Shaped Cavity
with κ = 2π; no noise; 30 incident and
observation directions; 250 × 250 grid

Parametrization of Peanut. γ(t) = 0.275
√
3 cos2 t+ 1(cos t, sin t)
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Numerical Result: Recovering the Peanut-Shaped Cavity

Figure: Recovering the Peanut-Shaped Cavity
with κ = π; noise δ = 0.05; 64 incident and
observation directions; 250 × 250 grid

Figure: Recovering the Peanut-Shaped Cavity
with κ = π; noise δ = 0.05; 128 incident and
observation directions; 250 × 250 grid

Parametrization of Peanut. γ(t) = 0.275
√
3 cos2 t+ 1(cos t, sin t)
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Conclusion & Future Work

Conclusion:

Factorization of the far-field operators, showed properties of auxiliary operators
important to approx. solvability

Linear sampling method with far-field measurements for recovering the clamped
cavity in a thin plate

implementation uses lots of multistatic data but less than with near field
measurements

Outlook:

Penetrable media, transmission eigenvalues

Recovering other cavities (e.g., in free plate, simply-supported plate)

Single measurement problem: reconstructing partial info on cavities given a single
incident plane wave

Factorization method: what are the necessary criteria for recovery? (LSM only
gives sufficient criteria)

Near-field (boundary measurement) sampling methods
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