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Part 1: Introduction
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Inverse Obstacle Wave Scattering

» Send a wave and observe the reflected wave by an unknown
obstacle

» Question: What information about the obstacle can one
extract from the observed wave?

» Type of waves: flexural waves in elastic plates (biharmonic
wave equation)

Scattered Field
us
Incident
Field
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Applications of Biharmonic Wave Scattering

Figure: V'eW_ of an ACOUS.tIC Black Figure: A cylindrical shell acting as a
H.ole: Technlque for Passive platonic elastic cloak of an object in
Vibration Control a thin elastic plate
Wang, Q. & Ge, X. (2020) Farhat, M., Chen, PY.. Bagc, H. et
al. (2014)
PURDUE
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Applications of Biharmonic Wave Scattering

Plate with uncloaked object

Plate with cloaked object . . .
Figure: A schematic of a plate with

Figure: Elastic Cloaking three equally spaced neutralisers for
Colquitt, D. (2015) vibration damping
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Part 2: Direct Scattering Problem for the
Biharmonic Wave Equation
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Direct and Inverse Scattering of Biharmonic Waves

Problem (The Direct Scattering Problem)

Figure: Clamped Cavity in a Thin Plate PURDUE
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Direct Scattering of Biharmonic Waves

The total field u = u® +u® € H? (R?) satisfies, with r = |z

A’y —k*u=0 inR*\D

u=0, Jd,u=0 ondD (1)
lim r'/2 (8,u° — iku®) =0, lim r'/?(8,Au® — ikAu®) = 0
7—00 7—00

Remark
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The scattered field, also known as the radiating solution, has the
following asymptotic expansion

ikr

u’(x,d; k) = ¢

701/2u°°(;f:) +0 (1> asr = |x| = o0

372

where #,d € S' = {z € R? : |z| = 1}.
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The scattered field, also known as the radiating solution, has the
following asymptotic expansion

ikr

u’(x,d; k) = ¢

701/2u°°(;f:) +0 (1> asr = |x| = o0

372

where 2,d € S' = {x € R? : |z| = 1}. Now define the far-field
operator as F : L%(S!) — L3(S)

(Fo)(@) = Ay = [ 0 (o.d: gld) ds(d).
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The scattered field, also known as the radiating solution, has the
following asymptotic expansion
ethr 1
u®(z,d; k) = mu%(;l:) +0 (73/2> asr = |x| = o0
where #,d € S' = {z € R? : |z| = 1}. Now define the far-field
operator as F : L%(S!) — L3(S)

(Fo)(@) = Ay = [ 0 (o.d: gld) ds(d).

The inverse problem reads: Given F for a range of wave numbers
obtain qualitative information about the cavity D in a thin elastic
plate.
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Biharmonic Wave Decomposition

Consider the two auxiliary functions

1 1

uy = —w(Aus —k%u®), uf = 572 (Au® + k*u®)

ufy is the ‘propagative part’ of u® and uj, is the ‘evanescent part’
of u® such that

ut =iy, At =k (ul — uly)
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Biharmonic Wave Decomposition

Consider the two auxiliary functions

1 1

uy = —ﬁ(Aus —k%u®), uf = 572 (Au® + k*u®)

ufy is the ‘propagative part’ of u® and uj, is the ‘evanescent part’
of u® such that

ut =l 4 uly,  Au® =k (ul, — ujp)

ufy and uj, satisfy the Helmholtz equation and modified
Helmholtz equation respectively

Auly + Eug; =0, Aulyy — kS, =0 inR*\ D
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Biharmonic Wave Decomposition

We can reformulate the scattering problem (1) as
Auly + Ky =0, Aujyy — kS, =0 inR?*\ D

uly 4+ ugy = —ut,  Ohuly + Ohuly = —0uu’ on D
lim r'/2 (8uly — ikuly) =0 (2)
r—00

lim r'/2 (8,u3, — iku,) =0, r=|z|
r—00
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Biharmonic Wave Decomposition

We can reformulate the scattering problem (1) as
Auly + Ky =0, Aujyy — kS, =0 inR?*\ D
why +uyy = —ut,  Ouuly + Oyuy = —Ou’ on OD
lim /2 (Ol — ikuly) =0 (2)

r—00

Tlg]élo /2 (Oruyy —ikuyy) =0, r=|z

Remark (Exponential Decay of u3,)

12/35 PURDUE

UNIVERSITY.



Far-Field Pattern of the Biharmonic Scattered Field

Because of the exponential decay of the evanescent part uj, and
Onuyy, it follows from the biharmonic wave decomposition that the
far-field patterns of w*° and its propagative part uj; coincide up to
a constant depending on k, i.e.,

u> (&) = C(k) ug (2),
where C'(k) = —1/2k?. The far-field operator
F : L*(S') — L?(S') can be equivalently defined as

(Fg)(@) = . C(k) ufy (2, d; k)g(d) ds(d)

Problem (Inverse Cavity Scattering Problem)
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Part 3: Direct Imaging Methods
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Reconstruction Methods

1. lterative methods to determine D (expensive optimization; a
good initial guess is needed; only one or a few incident waves
are needed; reconstructions are reasonably good)

2. Domain decomposition methods (solve an ill-posed linear
integral equation first to reduce computational expense, then
optimize)

3. Direct imaging methods (avoid optimization entirely, solve
many ill-posed integral equations, requires a lot of multistatic
data but no a priori information; partial qualitative
information about the scatterer is obtained)
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Reconstruction of D via Direct Imaging Methods

Remark (Shape Reconstruction)
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Reconstruction of D via Direct Imaging Methods

Remark (Shape Reconstruction)

» Assume only the location and shape of the object is needed
(e.g., looking for a crack or cavity).

» Based on model, derive an indicator test function I(z),
depending on coordinates, so that

I() = {O, z ¢ object

1, z € object

» I(z) must be fast to compute from the scattered or far-field

data.
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Reconstruction of D via Direct Imaging Methods

Direct methods for the solutions; no need for iterative
computations

17/35

>

>

>

Colton-Kirsch Linear Sampling Method published in 1996
Ikehata Probe Method published in 1998

Kirsch Factorization Method published 1998

Ikehata Enclosure Method published 1999

Potthast Singular Sources Method published 2000
Potthast & Luke No Response Test published 2003
Potthast Orthogonality Sampling Method published 2010
Liu Direct Sampling Method published 2016
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Sampling Methods

Figure: Types of Sampling
» '96 Colton — Kirsch: linear sampling method, factorization
(point sampling in grid)
» ‘98 lkehata: probing method (curve); ‘00 Potthast: singular

source method (curve/needle)

» ... Luke, Potthast, Sylvester, Kusiak, lkehata: range test, no
response test, enclosure method (sets/planes)
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Probe Method

Figure: Probing the scatterer with
curve/needle

The probe method (lkehata ‘98) is a method of probing inside
the given material by using the sequence of the energy gap

I, = ((Ao — Ap)(vnloq), Tnlan)

for a specially chosen sequence {v,} of solutions of the governing
equation for the background scatterer/cavity, with D C int(2).

» I, — 00 on a given curve

» [, is convergent outside the curve
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Singular Source Method

Like the probe method, the SSM (Potthast ‘00) is a method of
probing inside the given material but now using the magnitude
of the scattered field of singular sources

I(z) == |¥*(z,2)|.

Approximated by backprojection of the form

/Sn ) /Sn . 9(2,y)g(—d, 2) ds(d)ds(%)

for explicitly constructed kernels g(-, ).
» I(z) — oo on a given curve (as z — 9D)

» I(z) is convergent outside the curve
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Enclosure Method

Figure: Intersecting the scatterer

with sets
The enclosure method (lkehata ‘99) enables one to construct the
support of unknown convex polygons from the knowledge of one
measured field.

. oL
V=" (w+iw™)

is a special harmonic incident field.

» ) is some domain known to contain the unknown scatterer
» D Cint(Q)
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Enclosure Method

At the corners of polygonal scatterers, the following indicator

function becomes unbounded
v — @ ul
) 8Q an b BQ
o0 o0

I(r,t)=e {<%

with 7 > 0, t € R, u the unknown, w € S”~! the direction vector.
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Enclosure Method

At the corners of polygonal scatterers, the following indicator

function becomes unbounded
v — @ ul
) 8Q an b BQ
o0 o0

I(r,t)=e {<%

with 7 > 0, t € R, u the unknown, w € S”~! the direction vector.

» Benefit: requires only one special harmonic incident field

» Benefit: so doesn't require too much data; works well with
limited aperture data

» Drawback: only works for convex polygonal scatterers
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Factorization Method

Most direct imaging/sampling methods give only sufficient
conditions for z € supp D. Linear sampling method is no
exception. But factorization method (Kirsch 90's, Grinberg 00's)
gives necessary & sufficient conditions, assuming additional
assumptions.

Idea

wiz) = / R dg(d) ds(d), g e LX(S™)
Snfl
eik\x| 1
s _ (4, P

u’(z) = —|33|("_1)/2u (z)+ O (|$|n_2)

the far-field operator
F oo LS = L2S™ Y, Fg=A,

is factored as

F =—-GTG*, G compact, T isomorphism
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Factorization Method

F oo LAS" Y = LA™Y, Fg=A,
is factored as
F =-GTG*, G compact, T isomorphism

Range of G can be characterized and gives information about
supp(D). But the main benefit is that if

» T is strictly coercive

» F is a normal compact operator (so it has a ‘positive square

root’)

then Range(G) = Range(|F|'/?).
Range of F can be directly characterized under these assumptions,
giving direct info on supp(D).
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Part 4: Reconstruction of the Cavity D via
the Linear Sampling Method
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Uniqueness Result

Theorem (P. Li & H. Dong, 2023)

» This result guarantees uniqueness of the inverse cavity
scattering problem with clamped boundary conditions.

» Proof of the result is based on the reciprocity relations of the
far-field patterns of the corresponding propagative and
evanescent parts.
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The Far-Field Equation

Gz, z) = %Hél)(k:]x — z|), & # z: the fundamental solution of
the Helmholtz equation.

Gu(x,z) = iHél)(ik|x — z|), ¢ # z: the fundamental solution to
the modified Helmholtz. Then

Gla,) = 515G, y) — Guw,9), @4

is the fundamental solution of A2 — k%. G has the far-field pattern

1 eirr/4

2k Bk

—ikz-&

G (#) =
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The Far-Field Equation

Gz, z) = %Hél)(k:]x — z|), & # z: the fundamental solution of
the Helmholtz equation.

Gu(x,z) = iHél)(ik|x — z|), ¢ # z: the fundamental solution to
the modified Helmholtz. Then

1
G(x,y) = Q—kQ(GM(%y) —Gu(z,y), x#y
is the fundamental solution of A2 — k%. G has the far-field pattern

OO(SAC) _ 1 eiﬂ-/4 6—ikz-i

o2k Bk

[ (Fg.)(z) = G*®(z,2), g.€ L*S), z € R? ] (3)
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On Solving the Far-Field Equation

[ (Fg:)(&) = G=(&,2) g: € L*(S), z € R? ]

Let z € D and suppose that g, solves the far-field equation.
» Rellich’s Lemma = u®(z) = G(x,z) in R?\ D

() = (i) oo

G(z,z)
OnG(z, 2)

(%)%mm%w
Onvy

> vy () ::/ g(d)e™* 4 ds(d) is the Herglotz wave function.
St

>Asz€D—>8D,( )—)ooandsodoes
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On Solving the Far-Field Equation

In general, the far-field equation does not have a solution for any
z € R? since F is compact.

For z € D, the far-field equation has a solution if and only if the
interior boundary value problem

A’w, — k*w, =0 inD
wy; +G(,2) =0, Oyw,+ 9,G(-,z)=0o0n 0D

has a solution w, such that w, = v, is a Herglotz function with
kernel g on OD.

» Equivalently, this holds if k* # Dirichlet eigenvalue of —A? in
D.
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Factorization of the Far-Field Operator F

Define the following operators

G : H¥?(@D) x H'?(D) — L*(S') : (Z;) — w™

H: L*(S') — H*?(OD) x HY*(dD) : g — (a"’j} )
nYg

[ F=-GH J

» G maps boundary data of the exterior boundary value problem
to the far-field pattern of the solution w to the exterior
problem

Then

» H is the Herglotz wave operator
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Range Characterization of the Cavity D

The linear sampling method is a direct imaging method based on
the following range characterization of the cavity D:

This result helps justify the use of the indicator test function

I(z)= 1+
' ||9z||L2(Sl)
LSM states

» I(z) >0ifze D

» I(z) > 0asz— 90D and I(z) =0if 2 ¢ OD
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Reconstruction of the Cavity D via the LSM

Theorem (The Linear Sampling Method)
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Reconstruction of the Cavity D via the LSM

» Construct a grid G

» For each z; € G, solve the regularized far-field equation
(al + F*F)g., = F*G>®(2, z)

» To reconstruct 9D, we plot z; > 1/|gz, |[12(s1) for each
point z; in some grid point in R2.

Scattered Field

Incident
Field

ul

Figure: Shape Reconstruction via

33/35 Sampling in a Grid PURDUE
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Part 5: Ongoing Future Work
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Ongoing Future Work

35/35

numerical implementation of the linear sampling method with
far-field data

incorporate the presence of noisy data in implementation
other boundary conditions (e.g., free plate, simply supported)

formulate the factorization method for the inverse cavity
scattering problem based on the symmetric factorization of F
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