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Physical Intuition: Flexural Waves in Plates

Send a wave towards an unknown obstacle and measure the reflected wave.

Key question: What can the reflected wave tell us about the obstacle’s shape or
properties?

Flexural waves are bending waves traveling in thin elastic plates.

Modeled by the biharmonic wave equation, which captures plate bending.

When these waves hit a cavity (hole), they scatter.

Measuring scattered waves helps identify hidden cavities.

Thin Elastic Plate

Cavity (Hole)
Incident Waves

Scattered Waves
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Applications of Biharmonic Wave Scattering

Acoustic Black Hole:
Used to control the propagation of sound waves, trapping them within a specific region.

Elastic Cloaking:
Techniques to make objects undetectable to elastic waves, useful in vibration control.

Chladni Plate:
The vibrating patterns formed on a plate under the influence of oscillations,
representing modal shapes for Electronic Speckle Pattern Interferometry (ESPI).

Figure: Acoustic Black Hole,
American Society of
Mechanical Engineers, 2015

Figure: Mechanical Cloaking for
bridge support design structure

Figure: Chladni Plate for ESPI
vibration modes
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Biharmonic Clamped Scattering Problem

Let D ⊂ R2 be a bounded domain such that R2 \D is connected.

The total field u ∈ H2
loc(R

2 \D) satisfies the biharmonic wave equation:

∆2u− κ4u = 0 in R2 \D.

Clamped boundary conditions on ∂D:

u = 0, ∂νu = 0 on ∂D,

where ∂ν is the outward normal derivative.

The total field decomposes as

u = ui + us,

where ui is the incident flexural wave and us the scattered wave.

Incident waves are time-harmonic plane waves of the form

ui(x) = eiκx·d, d ∈ S1.

The scattered field us satisfies the biharmonic Sommerfeld radiation condition:

∂rv − iκv = O
(
r−

3
2
)

as r → ∞,

where v = us or ∆us.
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Decomposition of the Scattered Field

To analyze the biharmonic scattered field us, we introduce two auxiliary components
that separate us into parts satisfying simpler equations:

us
H := −

1

2κ2

(
∆us − κ2us

)
,

us
M :=

1

2κ2

(
∆us + κ2us

)
,

where

us = us
H + us

M, ∆us = κ2
(
us
M − us

H

)
.

Here, us
H is called the Helmholtz component, since it satisfies the Helmholtz

equation, while us
M is the modified (anti-Helmholtz) component, satisfying a

modified Helmholtz equation:{
∆us

H + κ2us
H = 0,

∆us
M − κ2us

M = 0,
in R2 \D.

This decomposition allows us to study us via two second-order PDEs instead of a
single fourth-order equation.
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Coupled Scattering Problem

The original biharmonic scattering problem can be reformulated as a coupled system
for the Helmholtz and modified Helmholtz components:∆us

H + κ2us
H = 0,

∆us
M − κ2us

M = 0,
in R2 \D,

with coupled boundary conditions on ∂D:

us
H + us

M = −ui, ∂νu
s
H + ∂νu

s
M = −∂νu

i,

and radiation conditions as r = |x| → ∞:

lim
r→∞

√
r (∂ru

s
H − iκus

H) = 0, lim
r→∞

√
r (∂ru

s
M − iκus

M) = 0.

Asymptotic behavior:

|us
H| = O

(
1
√
r

)
, |us

M| = O
(
e−κr

√
r

)
,

which follows from their Fourier-Hankel expansions and Bessel function asymptotics.

Key advantage: The anti-Helmholtz component us
M decays exponentially at infinity,

which greatly simplifies analysis and numerical treatment!
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Coupled Scattering Problem

The original biharmonic scattering problem can be reformulated as a coupled system
for the Helmholtz and modified Helmholtz components:∆us

H + κ2us
H = 0,

∆us
M − κ2us

M = 0,
in R2 \D,

with coupled boundary conditions on ∂D:

us
H + us

M = −ui, ∂νu
s
H + ∂νu

s
M = −∂νu

i,

and radiation conditions as r = |x| → ∞:

lim
r→∞

√
r (∂ru

s
H − iκus

H) = 0, lim
r→∞

√
r (∂ru

s
M − iκus

M) = 0.

Asymptotic behavior:

|us
H| = O

(
1
√
r

)
, |us

M| = O
(
e−κr

√
r

)
,

which follows from their Fourier-Hankel expansions and Bessel function asymptotics.
Key advantage: The anti-Helmholtz component us

M decays exponentially at infinity,
which greatly simplifies analysis and numerical treatment!
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Fundamental Solution and Green’s Representation
Fundamental Solutions of Helmholtz-type Equations
Let Φκ(x) and Φiκ(x) be the fundamental solutions in R2 of:

(∆ + κ2)Φκ(x) = −δ(x), (∆− κ2)Φiκ(x) = −δ(x)

Then: Fundamental Solution of Biharmonic Wave Operator

Gκ(x) =
1

2κ2
(Φiκ(x)− Φκ(x)) , (∆2 − κ4)Gκ(x) = −δ(x)

Green’s Representation Formulas
For x ∈ R2 \D, we have

us
H(x) =

∫
∂D

[∂νu
s
H(y)Φκ(x− y)− us

H(y) ∂νΦκ(x− y)] ds(y)

us
M(x) =

∫
∂D

[∂νu
s
M(y)Φiκ(x− y)− us

M(y) ∂νΦiκ(x− y)] ds(y)

Note: The fundamental solution for the 2D (anti-) Helmholtz equation is given by

Φκ(x) =
i

4
H

(1)
0 (κ|x|), Φiκ(x) =

i

4
H

(1)
0 (iκ|x|),

where H
(1)
0 is the Hankel function of the first kind of order zero.
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Far-Field Behavior and the Inverse Problem (Biharmonic)
We recall the fundamental solution of the 2D biharmonic wave operator:

Gκ(x− y) =
1

2κ2
[Φiκ(x− y)− Φκ(x− y)]

Far-Field Expansion:

Φκ(x− y) =
i

4
H

(1)
0 (κ|x− y|) ∼

eiκ|x|√
|x|

e−iκx̂·y , as |x| → ∞

Hence,

Gκ(x− y) ∼ −
1

2κ2
·
eiκ|x|√

|x|
e−iκx̂·y since Φiκ decays exponentially.

Substituting into Green’s representation yields the far-field expansion:

us(x) =
eiκ|x|√

|x|
u∞(x̂) +O(|x|−3/2), x̂ =

x

|x|

Far-Field Pattern:

u∞(x̂) := −
1

2κ2
√
8πκ

∫
∂D

[
∂νu

s(y)e−iκx̂·y − us(y)∂νe
−iκx̂·y

]
ds(y)

Inverse Problem: Given u∞(x̂) for all x̂ for one or more incident waves, reconstruct
the unknown cavity D ⊂ R2.
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Sampling Methods

Examples of sampling methods. Linear Sampling Method (Colton-Kirsch, 1996),
Factorization Method (Kirsch 1998), Probe Method (Potthast, 2001), Reciprocity
Gap Method (Colton-Haddar, 2005),...)

Principle: the idea is to construct an indicator test function I(z) that will test
whether a sampling point z is in the interior or exterior of the scatterer (i.e. I(z) ≈ 1
inside scatterer, I(z) ≈ 0 outside scatterer).

(+) Non-iterative, the computation of I does not require a forward solver.
(-) Requires a large amount of multi-static data (many transmitters-receivers).
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Extended Sampling Method

Extended Sampling Method for Far-Field Measurement

Helmholtz equation: Applied in various works:
Juan Liu, Jiguang Sun (2018) – One-wave data
Li, Deng, & Sun (2020) – Bayesian method for limited aperture
Fang Zeng (2020) – Interior inverse scattering
Sun & Zhang (2023) – Inverse source/multifrequency data

Elastic wave equation: Liu, J., Liu, X., & Sun (2019) – One-wave data

Why Extended Sampling?

Versatile: Works with one-wave, multi-wave, and multifrequency data.

Effective with limited data.

This talk: Applying this method to the biharmonic wave equation with one-wave and
multifrequency data.

Key Equation: The indicator function I(z) := ||gz ||L2(S1) comes from solving for the
weight function g = gz :

(FBzg)(x̂)︸ ︷︷ ︸
Superposition of shifted ball’s far-field data

= u∞(x̂)︸ ︷︷ ︸
Measured biharmonic far-field data

for a single incident angle d.
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Indicator Function Behavior

•
z (sampling point)

D

Bz (test disk)

I(z) := ||gz ||L2(S1) will take large values if D ∩Bz = ∅

I(z) := ||gz ||L2(S1) will take small values if D ⊊ Bz
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Extended Sampling Method: Scattering Problem

Let Bz = B(z,R) be a sound-soft disk centered at sampling point z ⊂ R2. Define
Us
Bz

(x, ŷ) as the solution of:
∆Us

Bz
+ κ2Us

Bz
= 0 in R2 \Bz ,

Us
Bz

= −eiκx·ŷ on ∂Bz ,

lim
r→∞

√
r
(
∂rU

s
Bz

− iκUs
Bz

)
= 0

The far-field pattern U∞
Bz

(x̂, ŷ) satisfies:

U∞
Bz

(x̂, ŷ) = eiκz·(ŷ−x̂)U∞
B0

(x̂, ŷ)

Main Benefit: Closed-form expression for the far-field pattern of the unshifted

sound-soft disk B0 = B(0, R):

U∞
B0

(x̂, ŷ) = −
e−iπ/4

√
2πκ

[
J0(κR)

1

H
(1)
0 (κR)

+ 2
∞∑

n=1

Jn(κR)
cos(nθ)

H
(1)
n (κR)

]

where θ is the angle between x̂ and ŷ.

Use: Enables efficient evaluation of U∞
Bz

via translation.
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Extended Sampling Method Far-Field Equation

Define the operator

FBz : L2(S1) → L2(S1), (FBzgz)(x̂) =

∫
S1

U∞
Bz

(x̂, ŷ) gz(ŷ) ds(ŷ).

(ESM Far-Field Equation)

FBzgz = u∞, x̂ ∈ S1

Idea: For each sampling point z, solve the above equation for gz . If a solution exists,
it suggests the unknown cavity D ⊆ Bz .

Key Challenge: This equation is ill-posed since FBz is a compact operator with an
analytic kernel.

Motivation: This motivates introducing auxiliary operators and regularization
techniques to effectively solve the inverse problem.
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Auxiliary Operators and Their Properties
Define two key operators associated with the test disk Bz :

GBz : H1/2(∂Bz) → L2(S1) maps Dirichlet boundary data f to the far-field
pattern V ∞ of the radiating solution V solving

∆V + κ2V = 0, in R2 \Bz ,

V = f, on ∂Bz ,

∂rV − iκV = O(r−3/2), r = |x| → ∞.

HBz : L2(S1) → H1/2(∂Bz) maps g to the boundary trace of the Herglotz wave
function

vg(x) =

∫
S1

g(ŷ)eiκx·ŷds(ŷ), x ∈ ∂Bz .

The far-field operator factorizes as

FBz = GBz ◦ (−HBz ).

Key properties:

If κ2 is not a Dirichlet eigenvalue of −∆ on Bz , then HBz is injective with dense
range.

GBz is injective and has dense range.

Consequently, FBz is injective with dense range.

All these operators are compact.
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Main Theorem for ESM

Theorem

Let Bz be a disk centered at a sampling point z with radius R, and let D be a cavity
in a thin plate with clamped boundary conditions. Assume that κ2 is not a Dirichlet
eigenvalue of −∆ in Bz . Then, the following hold for the modified far-field equation:

1 If D ⊂ Bz , then for any ϵ > 0, there exists a function gαz ∈ L2(S1) such that

||FBzg
α
z − u∞(x̂)||L2(S1) ≤ ϵ. (1)

Moreover, the associated Herglotz wave function

vgαz (x) :=

∫
S1

eiκx·dgαz (d) ds(d), x ∈ Bz ,

converges to the solution v of the Helmholtz equation in Bz with

v = −us
H on ∂Bz

as α → 0.

2 If D ∩Bz = ∅, then for every gαz satisfying (1) with a given ϵ > 0, we have

lim
α→0

||gαz ||L2(S1) = ∞.
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Multilevel Extended Sampling Method (ESM) Algorithm Overview

1 Initial Sampling:
Choose a large radius R.
Generate a sampling grid T with points spaced roughly R apart.
Use ESM to find the global minimum point z0 ∈ T of ∥gα

z ∥L2 .
Set D0 as an initial approximation of the cavity D.

2 Refinement Loop (for j = 1, 2, . . .):

Set finer radius Rj = R

2j
.

Generate a finer sampling grid Tj with points spaced roughly Rj .
Find the minimum point zj ∈ Tj .
If zj /∈ Dj−1, stop and go to Step 3.

3 Final Output:

zj−1, Dj−1 as the estimated location and shape of D.

This multilevel strategy improves accuracy by zooming in progressively on the cavity
location.
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Numerical Simulation: Multilevel ESM

Method: Multilevel Extended Sampling Method (MESM) used for numerical
simulation – multilevel iteratively selects best radius

Objective: Simulate scattering from apple-shaped cavities using varying positions.

Subfigures:
Apple cavity at origin - Simulation for a cavity centered at the origin.
Apple cavity at (-1.5, 1.5) - Simulation for a cavity shifted to the position (-1.5, 1.5).

Incident direction d = (1/2,
√
3/2) (fixed).

Figure: Apple cavity at origin Figure: Apple cavity at (-1.5, 1.5)
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Numerical Simulation: Multilevel ESM

Method: Multilevel Extended Sampling Method (MESM) used for numerical
simulation – multilevel iteratively selects best radius

Objective: Simulate scattering from peach-shaped cavities using varying
positions.

Subfigures:
Peach cavity at origin - Simulation for a cavity centered at the origin.
Peach cavity at (-1.5, 1.5) - Simulation for a cavity shifted to the position (-1.5, 1.5).

Incident direction d = (1/2,
√
3/2) (fixed).

Figure: Peach cavity at origin Figure: Peach cavity at (-1.5, 1.5)
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Multi-Incident Direction ESM: Peach Cavity
Objective: Simulate scattering from a peach-shaped cavity at a fixed frequency.
Benefit: no need to find best radius R.
Input Data:

u∞(x̂i, dj , κ): Far-field data for multiple incident directions dj at fixed frequency 2π.
Incident apertures referring to each dj :

γ
i
2 =

{
(cos θ, sin θ) | θ ∈

{
0,

π

8
,
π

4
,
3π

8
,
π

2

}}
γ
i
3 =

{
(cos θ, sin θ) | θ ∈

{
0,

π

5
,
2π

5
,
3π

5
,
4π

5
, π,

6π

5
,
7π

5
,
8π

5
,
9π

5

}}
Radius R = 1 (fixed)

Figure: Peach cavity from γi
1 Figure: Peach cavity from γi

2
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Multifrequency ESM: Peach Cavity
Objective: Simulate scattering from a peach-shaped cavity across multiple
frequencies. Benefit: no need to find best radius R
Frequency Range:

[κmin, κmax] =

{
[π, 2π] (first frequency range)

[π
3
, 5π] (second frequency range)

Input Data:
u∞(x̂i, d, κℓ): Far-field data for various incident directions and frequencies.

Incident direction d = (1/2,
√
3/2) (fixed). Radius R = 1 (fixed)

Frequencies: κℓ chosen at 5 distinct frequencies within the specified range.

Figure: Peach cavity with range [π, 2π] Figure: Peach cavity with range [π3 , 5π]
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Related: Linear Sampling Method (LSM)
Goal: Determine whether a sampling point z ∈ R2 lies inside the unknown cavity
D ⊂ R2.

LSM Equation:

Fgz = G∞
κ (·, z), (Fgz)(x̂) :=

∫
S1

u∞(x̂, d) gz(d) ds(d)

Where:
F : Far-field operator mapping weights gz to superpositions of measured data.
G∞

κ (·, z): Far-field pattern of a biharmonic point source at z.

Sampling Principle:
Feasible (regularized) solutions gz exist with small norm if and only if z ∈ D.
Indicator: Plotting ∥gz∥L2 reveals the support of D. Same Indicator as ESM!

D

z
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LSM: Recovering the Apple-Shaped Cavity

Figure: Recovering the Apple-Shaped Cavity with
κ = 2π; no noise; 30 incident and observation
directions; 250 × 250 grid

Figure: Recovering the Apple-Shaped Cavity with
κ = 2π; noise δ = 0.02; 30 incident and
observation directions; 250 × 250 grid

Parametrization of Apple. γ(t) =
0.55(1+0.9 cos t+0.1 sin 2t

1+0.75 cos t
(cos t, sin t)
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LSM Result: Recovering the ∂D ∈ C2 Peach-Shaped Cavity

Figure: Recovering the Peach-Shaped Cavity with
κ = π; no noise; 30 incident and observation
directions; 250 × 250 grid

Figure: Recovering the Peach-Shaped Cavity with
κ = π; noise δ = 0.05; 30 incident and
observation directions; 250 × 250 grid

Parametrization of Peach. γ(t) = 0.22(cos2 t
√
1− sin t+ 2)(cos t, sin t)
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LSM vs. ESM — Key Differences

Data Requirements:

LSM requires full multistatic far-field matrix (many incident directions).

ESM works with limited-aperture or even single-direction data.

Computation:

LSM involves solving ill-posed linear systems for each z.

ESM reduces to simpler integral equations using known test disks.

Conclusion: LSM is classical and reveals more information on scatterer (overall shape
and location), but ESM is more practical under data constraints (reveals location
only).
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