Problem 1. (4 points)

Find the partial fraction decomposition of $\frac{108}{x^2 - 81}$

(NO NEED TO EVALUATE THE INTEGRAL!)

Solution: Factor the denominator:

$$x^2 - 81 = (x - 9)(x + 9).$$

So we set

$$\frac{108}{x^2 - 81} = \frac{A}{x - 9} + \frac{B}{x + 9}.$$

Multiply through by (x-9)(x+9):

$$108 = A(x+9) + B(x-9).$$

Method 1 (expand and compare coefficients):

$$108 = (A+B)x + (9A - 9B).$$

So,

$$A + B = 0,$$
 $9A - 9B = 108.$

From A + B = 0, we get B = -A. Substituting:

$$18A = 108 \implies A = 6, B = -6.$$

Method 2 (cover-up trick): Plugging in x = 9 eliminates B:

$$108 = A(9+9) \implies A = 6.$$

Plugging in x = -9 eliminates A:

$$108 = B(-9 - 9) \implies B = -6.$$

Therefore,

$$\frac{108}{x^2 - 81} = \frac{6}{x - 9} - \frac{6}{x + 9}.$$

Problem 2. (4 points) Use partial fractions to evaluate the integral

$$\int \frac{5x+16}{x^2+8x} \, dx.$$

Solution: Factor the denominator:

$$x^2 + 8x = x(x+8).$$

So we write

$$\frac{5x+16}{x(x+8)} = \frac{A}{x} + \frac{B}{x+8}.$$

Multiply through by x(x + 8):

$$5x + 16 = A(x+8) + Bx.$$

Expanding,

$$5x + 16 = (A + B)x + 8A.$$

Thus,

$$A + B = 5,$$
 $8A = 16.$

So A = 2, and then B = 3.

$$\frac{5x+16}{x(x+8)} = \frac{2}{x} + \frac{3}{x+8}.$$

Now integrate:

$$\int \frac{5x+16}{x^2+8x} dx = \int \left(\frac{2}{x} + \frac{3}{x+8}\right) dx = 2\ln|x| + 3\ln|x+8| + C.$$

End of Solutions.