MA 16020: Lesson 17-18

Volume By Revolution

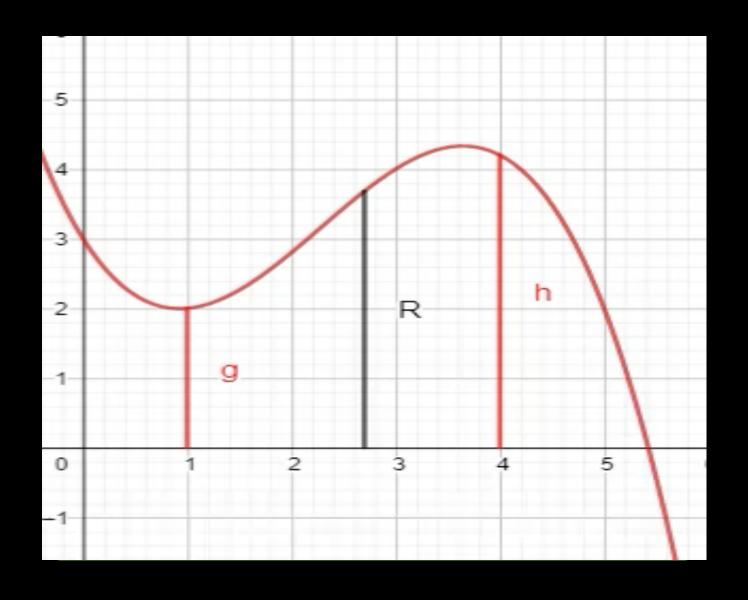
Shell Method

Pt 1-2

By General Ozochiawaeze

So far...

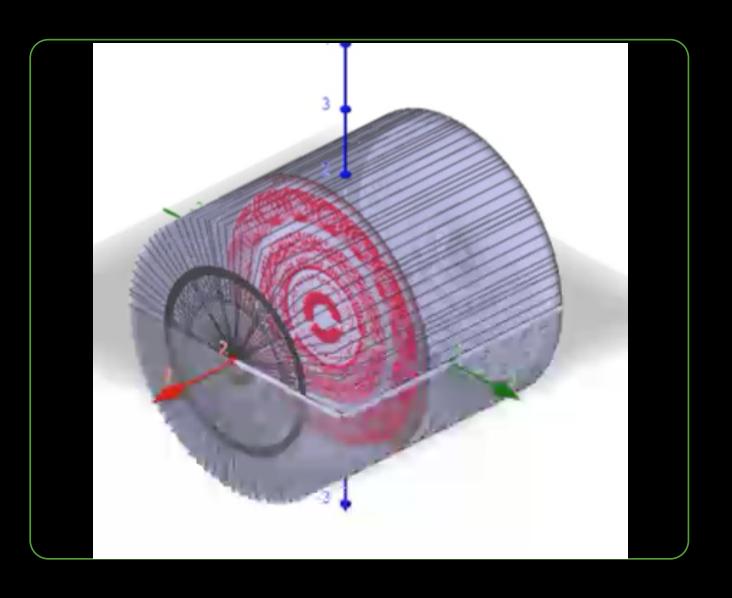
- We have learned how to find the volume of a solid of revolution by integrating
 - In the same way, we calculate the area under a curve
 - Running a line segment of varying length across the region, and adding them up



https://www.geogebra.org/m/tgceabb2#material/tnnhu7gz

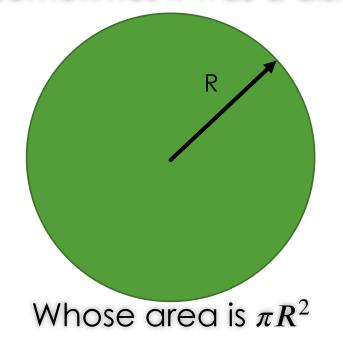
In other words,

- We learned to find the volume of a solid of revolution by
 - Running some area across a shape and add them up.
 - OLike in the case of the cylinder shown on the right.

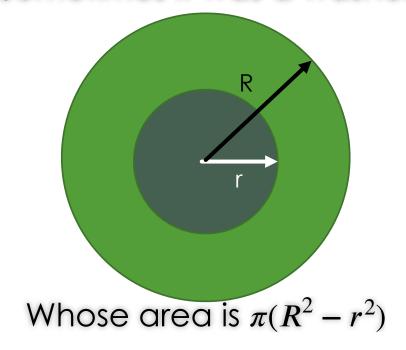


But what were those "shapes"? ANSWER: CROSS-SECTIONS

Sometimes it was a disk

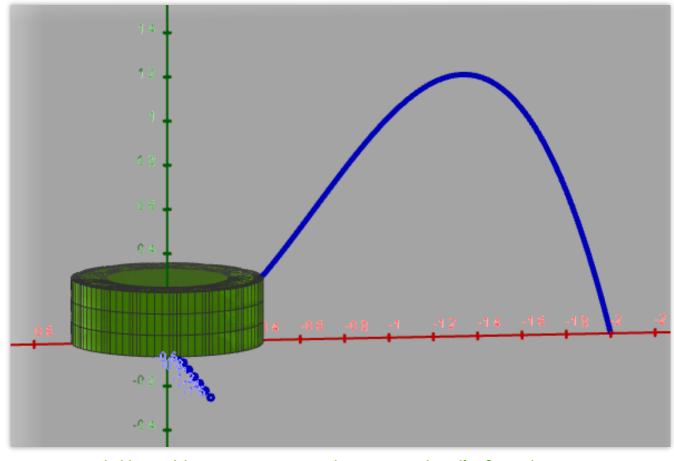


Sometimes it was a washer



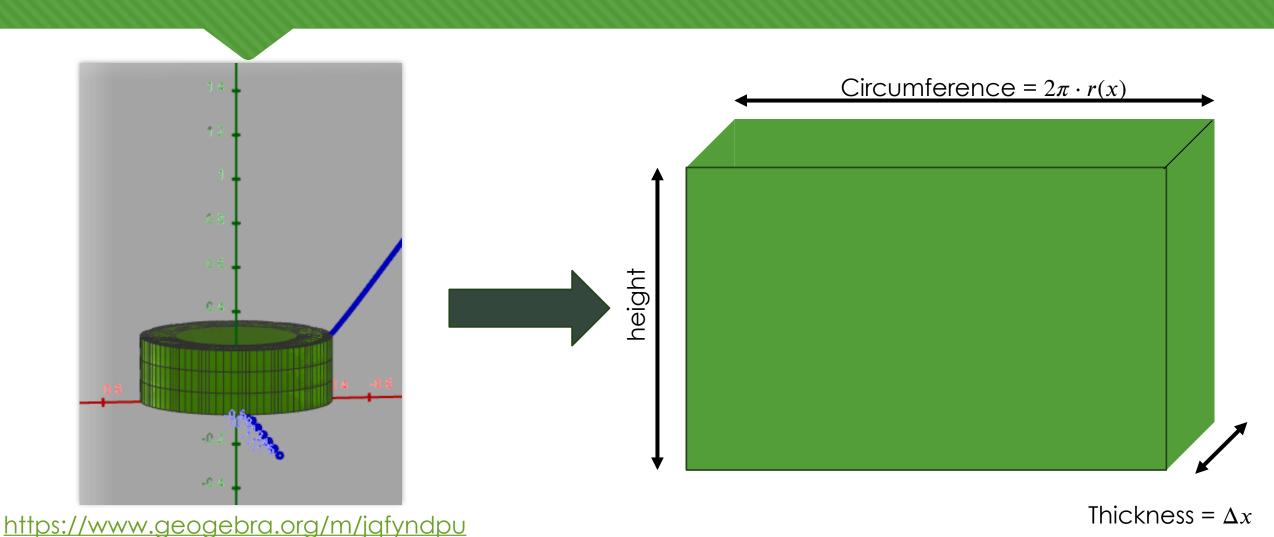
Cross Section: a (Cylindrical) Shell!

- Before we would find the volume by taking cuts perpendicular to the axis,
 - O In Shells, we take cuts parallel to our axis (as shown in the image in the right)
- The reason is USEFUL is that
 - For this problem, we no longer have to solve for x in terms of y.
- O What's the formula of that shell?



https://www.geogebra.org/m/jqfyndpu

Geometry Time: Let's Flatten the Shell ...



Geometry Time: Let's Flatten the Shell ...

- O So the volume of the green image is
- $V = \text{circumference} \times \text{height} \times \text{thickness}$

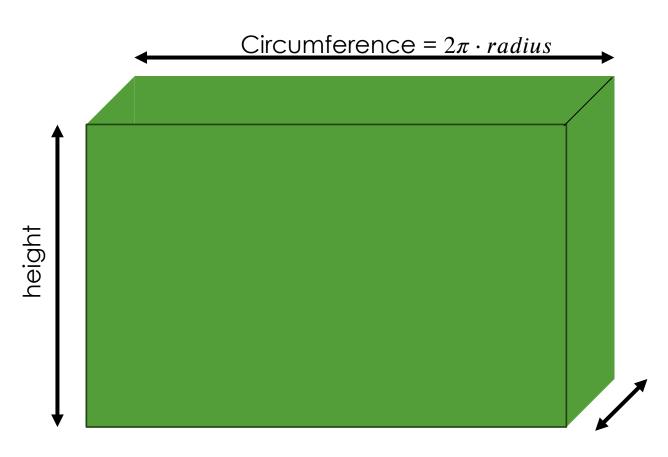
$$V = 2\pi \cdot \mathbf{r}(x) \cdot h \cdot \Delta x$$

where r(x) is the radius.

- The height is determined if you have one or two functions.
 - o i.e. Top Bottom or Right Left
- So, in the dx case,

$$V = 2\pi \cdot r(x) \left(Top - Bottom \right) dx$$
 over $[a, b]$.

i.e.
$$V = 2\pi \int_{a}^{b} r(x) \cdot (Top - Bottom) dx$$

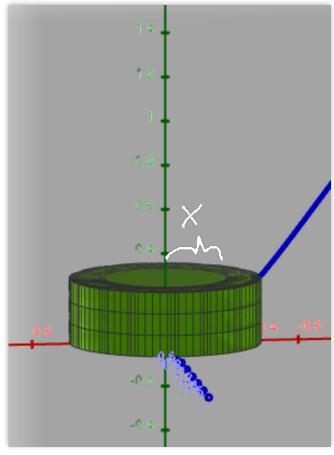


Thickness = Δx

But what is the radius, r(x)?

- O To find r(x), we need to find the distance of the shell from the axis of rotation
- So, in the dx case with rotation around the y
 -axis,
 - The shell is x units away from the y-axis. So, r(x) = x
- O This yields the formula:

$$V = 2\pi \int_{a}^{b} x \cdot (Top - Bottom) dx$$



https://www.geogebra.org/m/jqfyndpu

One thing about Shell Method Formulas

Since we are just cutting out parallel to the axis, we choose dx or dy in the following way:

$$V = 2\pi \int_{a}^{b} x \cdot (Top - Bottom) dx$$

$$V = 2\pi \int_{c}^{d} y \cdot (Right - Left) dy$$

If you need more of an explanation of where the Shell Method comes look at the hidden slides.

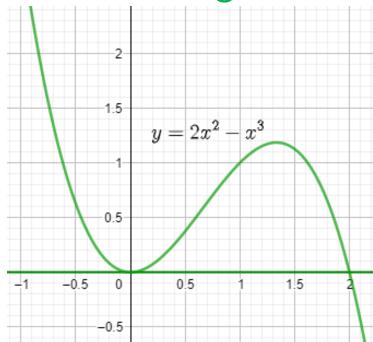
$$y = 2x^2 - x^3 \quad \text{and} \quad y = 0$$

About the y-axis.

$$y = 2x^2 - x^3 \quad \text{and} \quad y = 0$$

About the y-axis.

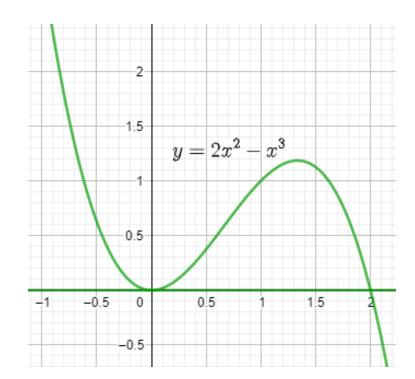
Draw the region.

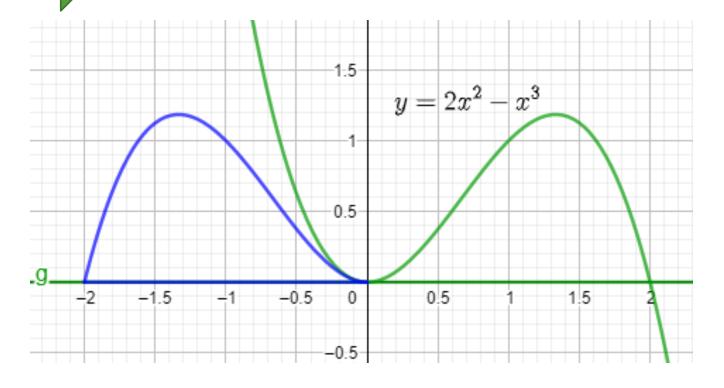


 $y = 2x^2 - x^3 \quad \text{and} \quad y = 0$

About the y-axis.

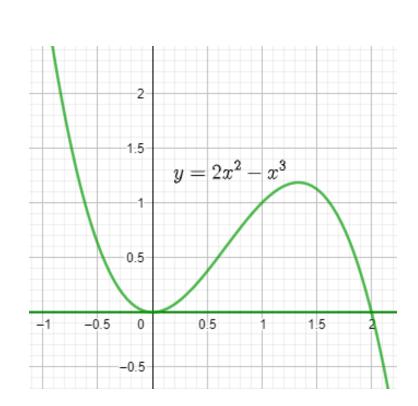
Rotation about y-axis

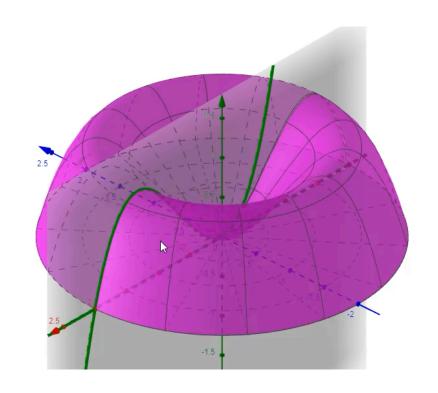




$$y = 2x^2 - x^3 \quad \text{and} \quad y = 0$$

About the y-axis.



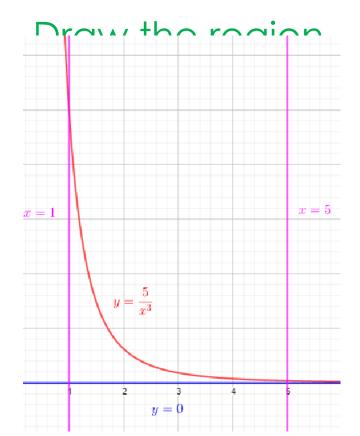


$$y = \frac{5}{x^3}$$
, $y = 0$, $x = 1$ and $x = 5$

About the y-axis.

$$y = \frac{5}{x^3}$$
, $y = 0$, $x = 1$ and $x = 5$

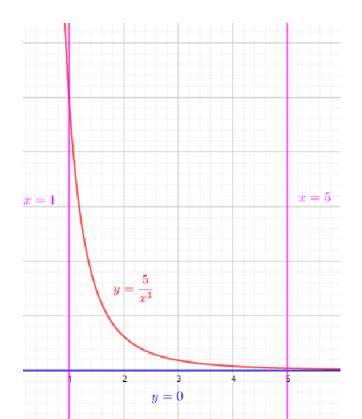
About the y-axis.



https://www.geogebra.org/m/f3wrypfh#material/aur8qe9f

$$y = \frac{5}{x^3}$$
, $y = 0$, $x = 1$ and $x = 5$

About the y-axis.



https://www.geogebra.org/m/f3wrypfh#material/aur8qe9f

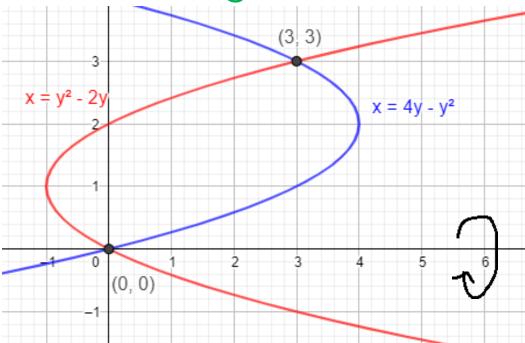
$$x = y^2 - 2y \text{ and } \qquad x = 4y - y^2$$

About the x-axis.

$$x = y^2 - 2y \text{ and } \qquad x = 4y - y^2$$

About the x-axis.

Draw the region.



https://www.geogebra.org/m/f3wrypfh#material/grar4br5

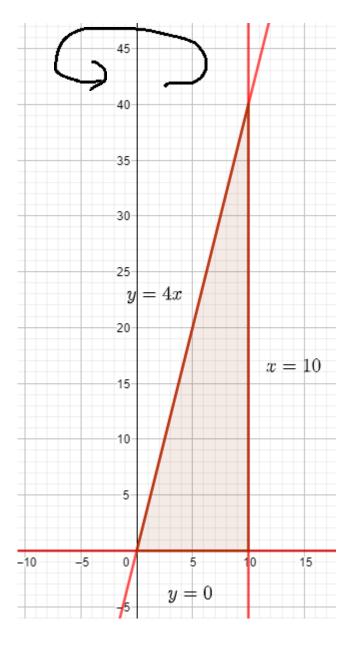
Example 6: Consider the region bounded by:

$$y = 4x$$
, $y = 0$, and $x = 10$

Set up the integral that represents the volume of solid obtained by the rotating the region about the y-axis using

- A) Disk/Washer Method
- B) Shell Method

Draw the region.



Example 6: Consider the region bounded by:

$$y = 4x$$
, $y = 0$, and $x = 10$

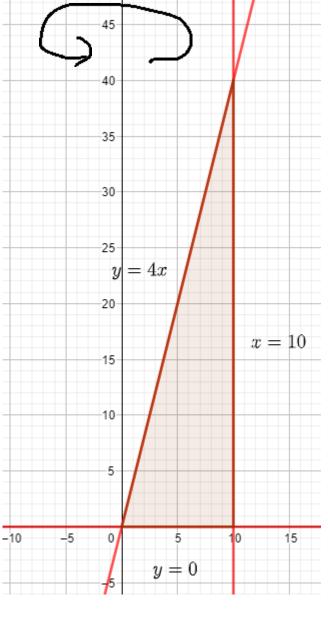
Set up the integral that represents the volume of solid obtained by the rotating the region about the y-axis using

Interesting Question: Which integral is easier to compute?

A)Disk/Washer Method

$$V = \pi \int_{0}^{40} (10)^2 - \left(\frac{y}{4}\right)^2 dy$$

B) Shell Method



When do we apply Disk Method or Washer Method or Shell Method?

- When the region "hugs" the axis of rotation
 - ⇒ Disk Method
- O When there is a "gap" between the region and axis of rotation
 - ⇒ Washer Method
- O But if you find solving for x or y, in either method, is hard
 - ⇒ Shell Method

		Axis of Rotation	
		x-axis	y-axis
M et ho d	Disk/Washer	dx	dy
	Shells	dy	dx

Formulas from Lessons 14 and 15 and 17-18 Rotation around x-axis or y-axis

For rotation around x-axis:

O Disk Method:

$$V = \pi \int_{a}^{b} [f(x)]^{2} dx$$

Washer Method:

$$V = \pi \int_{a}^{b} \left(R^2 - r^2 \right) \, dx$$

O Shell Method:

$$V = 2\pi \int_{c}^{d} y \cdot (Right - Left) \, dy$$

For rotation around y-axis:

O Disk Method:

$$V = \pi \int_{c}^{d} [g(y)]^{2} dy$$

O Washer Method:

$$V = \pi \int_{c}^{d} \left(R^2 - r^2 \right) \, dy$$

Shell Method:

$$V = 2\pi \int_{a}^{b} x \cdot (Top - Bottom) \ dx$$