MA 16020 – Applied Calculus II: Course Introduction

Instructor and Class Information

 Instructor: General Ozochiawaeze (call me General and salute!)

Sections: 150 and 160Classroom: WALC 3127

Times:

Section 160: 7:30 AM, MWFSection 150: 8:30 AM, MWF

Office Hours: TBD

Instructor Email / Contact: oozochia@purdue.edu

 Lecture notes, quiz solutions, and other course resources available at: https://obiorag.github.io/teaching/

Course Logistics

 Calculator: Any non-graphing, non-programmable scientific calculator may be used, e.g., TI-30Xa or similar models.

Homework:

- 35 assignments total, 10 points each on Achieve.
- Two lowest scores dropped.
- Due 11:59pm the day of the next lecture.
- Online discussion board available on Piazza.
- Check Piazza first to see if your question has already been answered.
- Email me before 6:00 PM (Sun-Fri) for a same-day response.
- Extensions only granted in extenuating circumstances.
 Homework = 10% of course grade.

• Exams:

- Three 1-hour midterms (100 points each).
- One comprehensive 2-hour final (200 points).
- All exams are multiple-choice, machine-graded.

Textbook and Homework Access

- Textbook: Electronic textbook with videos available through
 Achieve. Access link: Brightspace → Contents → Achieve.
- Homework: Online homework via Achieve. Links are in Brightspace → Contents → Achieve. Homework is organized by exam content.
- Full course schedule available online: https: //www.math.purdue.edu/academic/courses/semester/ 202610/ma16020/MA16020_Course_Calendar_F25-1.pdf
- For more information, visit the course webpage:
 MA 16020 Course Page

Quizzes

- Quizzes will be announced during the class before the one when they will take place, and will always be on a Wednesday.
- Duration: 10–15 minutes.
- Questions similar to homework and in-class examples.
- Each quiz worth 10 points:
 - 2 questions (4 points each)
 - 2 free points for name/date
- No make-up quizzes allowed.
- Excused absences with proper documentation will excuse your quiz score.

Exam Dates

Exam	Date & Time	Location
Exam 1	Monday, September 15, 6:30–7:30 pm	TBA
Exam 2	Monday, October 20, 6:30–7:30 pm	TBA
Exam 3	Monday, November 17, 6:30–7:30 pm	TBA
Final Exam	ТВА	ТВА

Course Grade Distribution

Component	Percentage	
Homework	10%	
Quizzes	10%	
Exam 1	16%	
Exam 2	16%	
Exam 3	16%	
Final Exam	32%	
Total	100%	

Email Etiquette

- Always include a subject line.
- Include your first and last name at the end of the email.
- Attach a picture of the problem and your work; makes life easier!

Example:

```
Subject Line: Homework 5, #7
Hi General,
I am having trouble with #7. I have my work attached.
I think it is the algebra that I'm struggling with.
Thanks,
Daniel Jackson
```

 Grades cannot be discussed via email. Please set up a meeting for grade discussions.

What is a Derivative?

- Intuitively: measures rate of change.
- Slope of the tangent line to a curve.
- If y = f(x), derivative at x = a is

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}.$$

Physical meaning: velocity is the derivative of position.

What is it For?

- Finding instantaneous rates of change.
- Modeling growth/decay.
- Optimizing functions (max/min problems).
- Describing sensitivity of one variable to another.

Basic Rules

- Constant Rule: $\frac{d}{dx}[c] = 0$
- Power Rule: $\frac{d}{dx}[x^n] = nx^{n-1}$
- Constant Multiple Rule: $\frac{d}{dx}[cf(x)] = cf'(x)$
- Sum/Difference Rule: $\frac{d}{dx}[f(x) \pm g(x)] = f'(x) \pm g'(x)$
- Product Rule: $\frac{d}{dx}[f(x)g(x)] = f'(x)g(x) + f(x)g'(x)$
- Quotient Rule: $\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{f'(x)g(x) f(x)g'(x)}{[g(x)]^2}$

Chain Rule

- Suppose y = f(g(x)), i.e. y is a composition of two functions.
- Newton notation:

$$(f \circ g)'(x) = f'(g(x)) \cdot g'(x)$$

Leibniz notation:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

where
$$u = g(x)$$
 and $y = f(u)$.

 Interpretation: Differentiate the outer function (leaving the inside intact), then multiply by the derivative of the inner function.

Example: Chain Rule in Action

- Let $y = \sin(x^2)$.
- Newton notation:

$$\frac{d}{dx}(\sin(x^2)) = \cos(x^2) \cdot (2x) = 2x \cos(x^2).$$

Leibniz notation:

$$y = \sin(u), \quad u = x^{2},$$

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx} = \cos(u) \cdot (2x) = 2x \cos(x^{2}).$$