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Inverse Problems for Waves

» Send waves to an object with unknown properties.

» Measure scattered waves.
» Task: Deduce information about the object (that's the inverse problem)

incident field
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Introduction

Wave Interaction with Thin Elastic Plates

» Thin elastic plate: Kirchhoff-Love theory pure-bending case, thickness H small
compared with the dimensions defining the span of the surface in (z,y)
(time-harmonic biharmonic wave equation)

» Cavity (unknown shape) perturbs vibrations

» Task: Reconstruct cavity shape from scattered plate waves

S

HH 1557

Thin Plate
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Introduction

Selected Application: Structural Health Monitoring

~ Structural Health monitoring (SHM) systems use
sensors and data analysis to assess structures,
detect damage, and enhance safety

early detection of delaminations & cracks
safety enhancement

reduction of maintenance intervals

vvyyy

cost saving by optimal assembly of sensors &
actuators

Sketch of experimental setup for an SHM sys-
tem
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Introduction

Biharmonic Clamped Scattering Problem

» Scattering of time-harmonic flexural waves by a 2D cavity in a thin plate D with
boundary I' = 0D:

A%u(z) — k*u(z) =0, zeR?\D,
u(z) =0, and Oyu(z)=0,z€Tl

lim /7] <8“S(x) - muS(x)) =0.

k :wavenumber (~ frequency)
i s . Qo s .
u = u® + u® :total wave, u’ :incident wave, u® :scattered wave

Incident plane wave: u?(x) = e**®¢ d € S! :incident direction.

vvyyvyy

Clamped boundary conditions given by Cauchy data (Dirichlet problem)— keeps
edges of the vibrating plate fixed.
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Introduction

Biharmonic Clamped Scattering Problem

vvyyvyy

Scattering of time-harmonic flexural waves by a 2D cavity in a thin plate D with
boundary I' = 0D:

A%u(z) — k*u(z) =0, zeR?\D,
u(z) =0, and Oyu(z)=0,z€Tl

lim /7] (8“5(9”) - muS(x)) =0.

k :wavenumber (~ frequency)

u = u' + u® :total wave, u® :incident wave, u® :scattered wave

Incident plane wave: u?(x) = e**®¢ d € S! :incident direction.

Clamped boundary conditions given by Cauchy data (Dirichlet problem)— keeps
edges of the vibrating plate fixed.

Well-posed: Bourgeouis-Hazard 2019, Dong-Li 2024.
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Far field measurements & inverse problem

» Far field asymptotic expansion.

eih‘|z\

u® (@) + O(|z|73/?), |z| = 00,2 = —
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Far field measurements & inverse problem

» Far field asymptotic expansion.

eih‘|z\

w(@) = S (@) + O(la] /%), 2] = 00, =

x
|z|
u®>®(2) = u®(&,d) :the
» The inverse problem: reconstruct D from measured far field patterns u®°(z,d, k)
for all Z,d € S' at a fixed frequency k.
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Far field measurements & inverse problem

» Far field asymptotic expansion.

eih‘|z\

w(@) = S (@) + O(la] /%), 2] = 00, =

x
|z|
u®>®(2) = u®(&,d) :the
» The inverse problem: reconstruct D from measured far field patterns u®°(z,d, k)
for all Z,d € S' at a fixed frequency k.
» On the uniqueness: Dong-Li 2024.
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Introduction

Biharmonic Wave Decomposition

The biharmonic scattered field u® can be split into two simpler pieces:
u® = up + uy,
where
> ul

fj: the Helmholtz component, satisfies

Augy + RQuﬁ =0, R? \ D
» uy,: the modified Helmholtz component, satisfies
Aujy — k2u$, =0, R2\D

Key idea: Instead of tackling a single fourth-order PDE, we reduce the problem to two
coupled second-order equations by factoring A2 — k% = (A — k2)(A — k2).
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Introduction

Coupled Scattering System

The biharmonic scattering problem can be reformulated as a coupled system of
radiating solutions (ug}, uy,):

Aus 2,8 — .
u,j + H;LF: 0, in R2\ D,
Augy — k2ufy =0,
with boundary conditions on 9D:
ud Fuy = —ut,  dufl + duy = —dul.

Key idea: uy, decays exponentially at infinity, so only u}, contributes to the far field.
This reduction to a coupled second-order system greatly simplifies analysis and

computation.
lufl = O(r=/2) and  Juml® = O(e~"")

as r = || — co. Moreover,

n ” ]
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Linear Sampling Method Analysis

Sampling Methods

Examples of sampling methods. Linear Sampling Method (Colton-Kirsch, 1996),
Factorization Method (Kirsch 1998), Probe Method (Potthast, 2001), Reciprocity
Gap Method (Colton-Haddar, 2005),...)

Principle: the idea is to construct an indicator test function Z(z) that will test
whether a sampling point z is in the interior or exterior of the scatterer (i.e. Z(z) = 1
inside scatterer, Z(z) =~ 0 outside scatterer).

(4+) Non-iterative, the computation of Z does not require a forward solver.
(-) Requires a large amount of multi-static data (many transmitters-receivers).
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Linear Sampling Method Analysis

Prior Work on Sampling Methods for Biharmonic Scattering

» LSM: Near-field approach (Bourgeois, B. Chapuis & A. Recoquillay, (2020))
o Uses near-field measurements: boundary measurements with point sources and dipoles.
o they recovered cavities in a clamped and free plate
o Limitation: Requires more dense measurement data.

» LSM: Far-field approach (Guo, J., Long, Y., Wu, Q., Li, J., (2024)

o Uses far-field measurements
o their analysis required excluding Dirichlet eigenvalues of the negative Laplacian &
auxiliary eigenvalue problem.
» Direct Sampling Method (DSM) with Far-Field Data (Harris, I., Lee, H., Li,
P.(2025))
o recovered clamped data; their method more robust towards noise
o their method enables resolution analysis of for reconstructions
» Methods based on reverse time migration (RTM) (Zhu, T. & Ge, Z. (2025))
o applied to four types of boundary conditions on the obstacle
o incorporated phased and phaseless measurement data (near-field/far-field)

Our contribution: - Strengthened LSM analysis with far-field measurements that
relaxes previous assumptions. - Applies LSM framework without excluding Dirichlet
eigenvalues. - Provides a more general reconstruction methodology for the biharmonic
case. - Our contribution also modifies method to incorporate partial data (not in this
talk!)

n ” ]
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Linear Sampling Method Analysis

Linear Sampling Method (LSM) — Core Idea

Goal: Determine whether a sampling point z € R? lies inside the unknown cavity
D C R? by solving a system of ill-posed linear integral equations.

LSM Equation:
Fogo = ne—inEE (Fg.)(#) = / u™(&,d) g(d) ds(d), g€ L2(SY)
Jst

Where:
» F: Far-field operator mapping weights g. to superpositions of measured data.
» ye T2 Far-field pattern of a point source at the sampling point z.

_ 1 eim/4 . .. .
> y=—5> 5= S a constant arising from the fundamental solution

Sampling Principle:
» Feasible (regularized) solutions g, exist with small norm if and only if z € D.
» Indicator: Plotting ||gz||;2 reveals the support of D.
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Introduction
Linear Sampling Method Analysis
Selected Numerical Results

[ll-posedness and Approximate Solvability in LSM

Issue: The LSM equation o
—U1KRI-Z

Fgz = e
is ill-posed because the far-field operator F: L2(S!) — L?(S') is compact.

Why? Well-known that the The kernel u®° (&, d) of F is analytic in both variables
(#,d) € St x St, leading to smoothing behavior and thus compactness.

For the LSM to function as a reliable indicator method, we want:
F is injective with dense range in L?(S1).

This allows us to use regularized solutions g, to test membership of z € D.

Interpretation: While exact solutions g, may not exist, we can seek approximate
solutions whose norms reveal geometric information about the scatterer.
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Linear Sampling Method Analysis
Selected Numerical Results

Injectivity via Clamped Transmission Problem

Goal: Show that if the far-field vanishes, the corresponding Herglotz kernel g must be
zero (Fg = 0= g = 0). Know by Rellich’s lemma: Fg =0 = u} g=0 in R2\ D.
Idea: Decompose the scattered field ug = uj, gt Uy B of the farfield Fg:
> uﬁﬂg satisfies the Helmholtz equation (A + ”2)1‘&,9 = 0in D and governs the far
field.
> upy , satisfies a modified Helmholtz equation (A — k?)uym = 0 in R? \ D and
decays exponentially.
Clamped Transmission Problem:
(A+£k%g=0 inD, (A—k?>)p=0 inR?2\D
and
qup:O, 31/(1+3up=0, on I’

with ¢ = Uﬁ,g and p = uf,lyg

If the only solution is ¢ = p = 0 (i.e., k is not an eigenvalue of the clamped
transmission problem), then F is injective. In other words, the far field uniquely
determines the kernel.
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Linear Sampling Method Analysis
Selected Numerical Results

Reciprocity and Dense Range of F

Reciprocity Relation (Biharmonic Far-Field Pattern):
u™®(2,d) = u*(—d, —%)

(Follows from Green's representation theorem for far-field pattern and exponential
decay of anti-Helmholtz component.)

Adjoint Relationship: The reciprocity identity implies:
(Fre)(d) = L u(=d, —2) p(#) ds(2) = (F@)(d), where 3(9) = ¢(—9)
S

Conclusion: Know Range(F) = Null(F*)=, therefore:

Assume k is not an eigenvalue of the clamped transmission problem. Then the
far-field operator
F:LA(SY) = L2(sY)

is injective and has dense range.
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Linear Sampling Method Analysis

Outline of LSM

FarField Operator: F : L2(S') — L2(S!) defined by

Fg(&) = /Sl u™ (&, d) g(d) ds(d).
Let us define for (h1,h2) T € H3/2(T") x H'/2(T") the unique function
w € HZ (R%\ D) satisfying

A’w—k*w=0 inR%2\D,
w=hy, J,w=hy onT,

: " (1)
lim / Y ikw| ds=o0. (SRQ)
700 [ 4=

or

= Fg = w™ for w solving (1) with (h1,h2)T = (vg,Buvg)" on T, where

vg () ::/ ul(z,d)g(d) ds(d), g€ L*S'), =eR2
sl

n ” ]
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Linear Sampling Method Analysis

Outline of LSM

FarField Operator: F : L2(S') — L2(S!) defined by
Fg(&) = /Sl u™ (&, d) g(d) ds(d).

= Considering the (compact) operator H : L?(S') — H3/2(T") x H'/?(T) defined by
Hg = (Ugval/”g)—r

and the (compact) operator G : H3/2(I") x HY/2(I") — L?(S') by
G(h1,h2) T = w®,

then clearly:

F=—-GoH

Theorem: The operator G : H3/2(T") x H'/2(T") — L?(S'), the clamped cavity D
satisfies: a point z € D if and only if

v e %% ¢ Range(G).

n ” ]
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Linear Sampling Method Analysis

Main Theorem of LSM

Theorem: Assume k is not an eigenvalue of the clamped transmission problem. Then
the operator F is injective with dense range. Moreover, the following holds.

» If z € D and € > 0 given then there exists g7 such that
[[Fgg —ve 2| L2g1y < e

» If 2 ¢ D then for all g% such that || Fg$ — ’ye_i"“"z'z\|L2<S1) <e,

lim [[gZ|| = oo.
a—0

= Gives a “characterization” of D in terms of nearby solutions of

—iKkE 2z

Fg. >~ e

Drawbacks: this is not constructive ...

» Theorem doesn’t provide how to construct g¢. In practice we use a regularization
scheme.

» Have sufficient but not necessary criteria for recovering D. How does
Z HQZHL2(SI) behave inside D? (In practice, it's finite).
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Selected Numerical Results

Numerical Implementation

» A regularization is needed to solve the far-field equation, e.g., we used Tikhonov
reg. with a = 1076 in all reconstructions

(al + FiFa)gs = Fio-

» Dimension of discretized matrix is based on the number N of sources/receivers.
We selected a 250-by-250 grid for each construction.

Example: 30 sources/receivers yields a 30-by-30 matrix Fy
> Fy=[u>® (i'i,gjj)]fj:l. Discretize so that
ji = yj = (cos@i,sinéj) . 91 = 27T(i — 1)/d, i = 1, e ,d.

We used Li and Dong's boundary integral equation method to approximate the
discretized far-field operator Fj.

» Add noise to test the stability of the LSM
F§ = [Fij(L+ 6B )iy, [IEll2=1.

E € C4%d s a matrix with random entries, 0 < § < 1 relative noise level
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Selected Numerical Results

LSM Algorithm

The LSM reformulates the problem of determining the shape of the cavity D as the
calculation of the indicator function g&. The overall computational steps are
summarized below:

Algorithm 1 Linear Sampling Method (LSM)

1: Choose a cutoff parameter ¢ > 0, and select a mesh M of sampling points in a
region (2 that contains the cavity D;

2: For each sampling point z € M, compute an approximate solution g to the far-
field equation using Tikhonov regularization with Morozov discrepancy principle;

3: Classify z as inside D if 1/||g¢|[2(s1) > ¢, else outside.
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Selected Numerical Results

Selected Numerical Result: Recovering the Apple-Shaped Cavity

Reconstruction no error Reconstruction with 5% error

Recovering the Apple-Shaped Cavity with Recovering the Apple-Shaped Cavity with
xk = 2; no noise; 30 incident and observation k = 2m; noise § = 0.05; 30 incident and
directions; 250 x 250 grid observation directions; 250 x 250 grid

0.55(140.9 cos t+0.1 sin 2¢
140.75cos t

Parametrization of Apple. (t) = (cost,sint)
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Selected Numerical Results

Numerical Result: Recovering the I' € C? Peach-Shaped Cavity

Reconstruction no error Reconstruction with 5% error

s 0 15 —os
s o 0s o1

. 00 05 ‘Jc\

R 0 - o

: E ~ 5 El 05 0 05 1 15

Recovering the Peach-Shaped Cavity with Recovering the Peach-Shaped Cavity with
x = m; no noise; 30 incident and observation k = m; noise § = 0.05; 30 incident and
directions; 250 x 250 grid observation directions; 250 x 250 grid

Parametrization of Peach. ~y(¢) = 0.22(cos? tv/1 — sint + 2)(cost, sint)

n ” ]
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Selected Numerical Results

Numerical Result: Recovering the Unit Disk at Dirichlet eigenvalues

Unit Ball Cavity with r =}, Unit Ball Gavity with r =,

1 o1 15 o1
1
01 08 o1
o o
08 005 05 005
N
K 1
s o o
s E) 05 o 05 1 15 15 ) 05 0 05 1 15

15,
1 ;

Reconstruction of the unit disk using the (b)Reconstruction of the unit disk using
LSM. (a) K = jo1 the LSM. k = Jo2

Consider the case where k2 = )\, with X being an eigenvalue of the Dirichlet problem:
—A¢p=Ap inBi(0), ¢=0 on dB1(0).

The eigenvalues of this problem are given by Ay, = j2,,,, where jmn denotes the
m-th positive zero of the Bessel function Jy,,(r) of order n. jo1 and joo are the first
and second positive zeros of the Bessel function Jo(r)
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Selected Numerical Results

Conclusion & Future Work

Key Results:
» Applied **Linear Sampling Method (LSM)** to biharmonic scattering.
» Relaxed assumptions on the wavenumber k compared to prior work.

» Modified framework in the same contribution for **partial data** (not covered in
this talk).

Ongoing Work:

» **Factorization Method** (Kirsch) for rigorous necessary and sufficient
conditions for recovery for **clamped obstacles**.

» Extension to **penetrable obstacles**: challenges involve coupled transmission
conditions; goal is a fully rigorous LSM/FM framework for these cases.

n ” ]
General Ozochiawaezel  Isaac Harris!  Peijun Li2



	Introduction
	Linear Sampling Method Analysis
	Selected Numerical Results

