Strengthened Analysis of Linear Sampling Method for Biharmonic Wave Scattering

General Ozochiawaeze¹ Isaac Harris¹ Peijun Li²

Department of Mathematics, Purdue University
Chinese Academy of Sciences

3rd UNCG Virtual PDE Conference October 2025

Overview

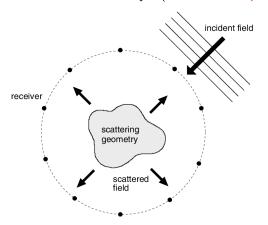
Introduction

Linear Sampling Method Analysis

Selected Numerical Results

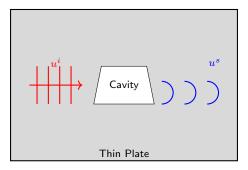
Inverse Problems for Waves

- ► Send waves to an object with unknown properties.
- ► Measure scattered waves.
- ► Task: Deduce information about the object (that's the inverse problem)



Wave Interaction with Thin Elastic Plates

- ▶ Thin elastic plate: Kirchhoff-Love theory pure-bending case, thickness H small compared with the dimensions defining the span of the surface in (x,y) (time-harmonic biharmonic wave equation)
- ► Cavity (unknown shape) perturbs vibrations
- ► Task: Reconstruct cavity shape from scattered plate waves



Selected Application: Structural Health Monitoring

→ Structural Health monitoring (SHM) systems use sensors and data analysis to assess structures, detect damage, and enhance safety

- ▶ early detection of delaminations & cracks
- ► safety enhancement
- reduction of maintenance intervals
- cost saving by optimal assembly of sensors & actuators

Sketch of experimental setup for an SHM system

Biharmonic Clamped Scattering Problem

▶ Scattering of time-harmonic flexural waves by a 2D cavity in a thin plate D with boundary $\Gamma = \partial D$:

$$\begin{split} &\Delta^2 u(x) - \kappa^4 u(x) = 0, \quad x \in \mathbb{R}^2 \setminus \overline{D}, \\ &u(x) = 0, \quad \text{and} \quad \partial_{\nu} u(x) = 0, \ x \in \Gamma \\ &\lim_{|x| \to \infty} \sqrt{|x|} \left(\frac{\partial u^s(x)}{\partial |x|} - i \kappa u^s(x) \right) = 0. \end{split}$$

- $\blacktriangleright \kappa$:wavenumber (\sim frequency)
- $lackbox{} u=u^i+u^s$:total wave, u^i :incident wave, u^s :scattered wave
- ▶ Incident plane wave: $u^i(x) = e^{i\kappa x \cdot d}, d \in \mathbb{S}^1$:incident direction.
- Clamped boundary conditions given by Cauchy data (Dirichlet problem)

 keeps edges of the vibrating plate fixed.

Biharmonic Clamped Scattering Problem

▶ Scattering of time-harmonic flexural waves by a 2D cavity in a thin plate D with boundary $\Gamma = \partial D$:

$$\begin{split} &\Delta^2 u(x) - \kappa^4 u(x) = 0, \quad x \in \mathbb{R}^2 \setminus \overline{D}, \\ &u(x) = 0, \quad \text{and} \quad \partial_{\nu} u(x) = 0, \ x \in \Gamma \\ &\lim_{|x| \to \infty} \sqrt{|x|} \left(\frac{\partial u^s(x)}{\partial |x|} - i \kappa u^s(x) \right) = 0. \end{split}$$

- $\blacktriangleright \kappa$: wavenumber (\sim frequency)
- $ightharpoonup u=u^i+u^s$:total wave, u^i :incident wave, u^s :scattered wave
- ▶ Incident plane wave: $u^i(x) = e^{i\kappa x \cdot d}, d \in \mathbb{S}^1$:incident direction.
- Clamped boundary conditions given by Cauchy data (Dirichlet problem)

 keeps edges of the vibrating plate fixed.
- ▶ Well-posed: Bourgeouis-Hazard 2019, Dong-Li 2024.

Far field measurements & inverse problem

► Far field asymptotic expansion.

$$u^{s}(x) = \frac{e^{i\kappa|x|}}{\sqrt{x}}u^{\infty}(\hat{x}) + O(|x|^{-3/2}), \quad |x| \to \infty, \hat{x} := \frac{x}{|x|}$$

 $u^{\infty}(\hat{x}) = u^{\infty}(\hat{x}, d)$:the far field pattern of u^s (measured data)

Far field measurements & inverse problem

► Far field asymptotic expansion.

$$u^{s}(x) = \frac{e^{i\kappa|x|}}{\sqrt{x}}u^{\infty}(\hat{x}) + O(|x|^{-3/2}), \quad |x| \to \infty, \hat{x} := \frac{x}{|x|}$$

 $u^{\infty}(\hat{x}) = u^{\infty}(\hat{x}, d)$:the far field pattern of u^s (measured data)

▶ The inverse problem: reconstruct D from measured far field patterns $u^{\infty}(\hat{x}, d, \kappa)$ for all $\hat{x}, d \in \mathbb{S}^1$ at a fixed frequency κ .

Far field measurements & inverse problem

► Far field asymptotic expansion.

$$u^{s}(x) = \frac{e^{i\kappa|x|}}{\sqrt{x}}u^{\infty}(\hat{x}) + O(|x|^{-3/2}), \quad |x| \to \infty, \hat{x} := \frac{x}{|x|}$$

 $u^{\infty}(\hat{x}) = u^{\infty}(\hat{x}, d)$: the far field pattern of u^{s} (measured data)

- ▶ The inverse problem: reconstruct D from measured far field patterns $u^{\infty}(\hat{x}, d, \kappa)$ for all $\hat{x}, d \in \mathbb{S}^1$ at a fixed frequency κ .
- ► On the uniqueness: Dong-Li 2024.

Biharmonic Wave Decomposition

The biharmonic scattered field u^s can be split into two simpler pieces:

$$u^s = u_{\mathsf{H}}^s + u_{\mathsf{M}}^s,$$

where

 $ightharpoonup u_H^s$: the **Helmholtz component**, satisfies

$$\Delta u_{\mathsf{H}}^s + \kappa^2 u_{\mathsf{H}}^s = 0, \quad \mathbb{R}^2 \setminus \overline{D}$$

 $ightharpoonup u_{\rm M}^s$: the modified Helmholtz component, satisfies

$$\Delta u_{\mathsf{M}}^s - \kappa^2 u_{\mathsf{M}}^s = 0, \quad \mathbb{R}^2 \setminus \overline{D}$$

Key idea: Instead of tackling a single fourth-order PDE, we reduce the problem to two coupled *second-order* equations by factoring $\Delta^2 - \kappa^4 = (\Delta - \kappa^2)(\Delta - \kappa^2)$.

Coupled Scattering System

The biharmonic scattering problem can be reformulated as a coupled system of radiating solutions $(u_{\rm H}^s, u_{\rm M}^s)$:

$$\begin{cases} \Delta u_{\mathsf{H}}^s + \kappa^2 u_{\mathsf{H}}^s = 0, \\ \Delta u_{\mathsf{M}}^s - \kappa^2 u_{\mathsf{M}}^s = 0, \end{cases} \quad \text{in } \mathbb{R}^2 \setminus \overline{D},$$

with boundary conditions on ∂D :

$$u_{\mathsf{H}}^s + u_{\mathsf{M}}^s = -u^i, \quad \partial_{\nu} u_{\mathsf{H}}^s + \partial_{\nu} u_{\mathsf{M}}^s = -\partial_{\nu} u^i.$$

Key idea: $u_{\rm H}^s$ decays exponentially at infinity, so only $u_{\rm H}^s$ contributes to the far field. This reduction to a coupled second-order system greatly simplifies analysis and computation.

$$|u_{\mathsf{H}}^{s}| = O(r^{-1/2})$$
 and $|u_{\mathsf{M}}|^{s} = O(e^{-\kappa r})$

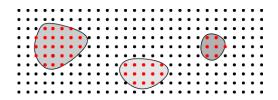
as $r = |x| \to \infty$. Moreover,

$$u^{\infty} = u_{\mathsf{H}}^{\infty}$$

Sampling Methods

Examples of sampling methods. Linear Sampling Method (Colton-Kirsch, 1996), Factorization Method (Kirsch 1998), Probe Method (Potthast, 2001), Reciprocity Gap Method (Colton-Haddar, 2005),...)

Principle: the idea is to construct an indicator test function $\mathcal{I}(z)$ that will test whether a sampling point z is in the interior or exterior of the scatterer (i.e. $\mathcal{I}(z)\approx 1$ inside scatterer, $\mathcal{I}(z)\approx 0$ outside scatterer).



- (+) Non-iterative, the computation of $\mathcal I$ does not require a forward solver.
- (-) Requires a large amount of multi-static data (many transmitters-receivers).

Prior Work on Sampling Methods for Biharmonic Scattering

- ▶ LSM: Near-field approach (Bourgeois, B. Chapuis & A. Recoquillay, (2020))
 - Uses near-field measurements: boundary measurements with point sources and dipoles.
 - they recovered cavities in a clamped and free plate
 - Limitation: Requires more dense measurement data.
- ▶ LSM: Far-field approach (Guo, J., Long, Y., Wu, Q., Li, J., (2024)
 - Uses far-field measurements
 - their analysis required excluding Dirichlet eigenvalues of the negative Laplacian & auxiliary eigenvalue problem.
- ▶ Direct Sampling Method (DSM) with Far-Field Data (Harris, I., Lee, H., Li, P.(2025))
 - recovered clamped data; their method more robust towards noise
 - · their method enables resolution analysis of for reconstructions
- ▶ Methods based on reverse time migration (RTM) (Zhu, T. & Ge, Z. (2025))
 - applied to four types of boundary conditions on the obstacle
 - incorporated phased and phaseless measurement data (near-field/far-field)

Our contribution: - Strengthened LSM analysis with far-field measurements that relaxes previous assumptions. - Applies LSM framework without excluding Dirichlet eigenvalues. - Provides a more general reconstruction methodology for the biharmonic case. - Our contribution also modifies method to incorporate partial data (not in this talk!)

Linear Sampling Method (LSM) — Core Idea

Goal: Determine whether a sampling point $z\in\mathbb{R}^2$ lies inside the unknown cavity $D\subset\mathbb{R}^2$ by solving a system of ill-posed linear integral equations.

LSM Equation:

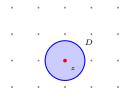
$$\mathcal{F}g_z = \gamma e^{-i\kappa \hat{x} \cdot z}, \quad (\mathcal{F}g_z)(\hat{x}) \coloneqq \int_{\mathbb{S}^1} u^{\infty}(\hat{x}, d) \, g_z(d) \, ds(d), \quad g \in L^2(\mathbb{S}^1)$$

Where:

- \blacktriangleright \mathcal{F} : Far-field operator mapping weights g_z to superpositions of measured data.
- $ightharpoonup \gamma e^{-i\kappa\hat{x}\cdot z}$: Far-field pattern of a point source at the sampling point z.
- ightharpoons $\gamma = -rac{1}{2\kappa^2}rac{e^{i\pi/4}}{\sqrt{8\pi\kappa}}$ is a constant arising from the fundamental solution

Sampling Principle:

- ▶ Feasible (regularized) solutions g_z exist with small norm if and only if $z \in D$.
- ▶ Indicator: Plotting $||g_z||_{L^2}$ reveals the support of D.



III-posedness and Approximate Solvability in LSM

Issue: The LSM equation

$$\mathcal{F}g_z = \gamma e^{-i\kappa \hat{x}\cdot z}$$

is ill-posed because the far-field operator $\mathcal{F}\colon L^2(\mathbb{S}^1)\to L^2(\mathbb{S}^1)$ is compact.

Why? Well-known that the The kernel $u^{\infty}(\hat{x},d)$ of \mathcal{F} is analytic in both variables $(\hat{x},d)\in\mathbb{S}^1\times\mathbb{S}^1$, leading to smoothing behavior and thus compactness.

Approximate Solvability Condition (Key Property)

For the LSM to function as a reliable indicator method, we want:

 \mathcal{F} is injective with dense range in $L^2(\mathbb{S}^1)$.

This allows us to use regularized solutions g_z to test membership of $z \in D$.

Interpretation: While exact solutions g_z may not exist, we can seek *approximate* solutions whose norms reveal geometric information about the scatterer.

Injectivity via Clamped Transmission Problem

Goal: Show that if the far-field vanishes, the corresponding Herglotz kernel g must be zero ($\mathcal{F}g=0\Rightarrow g=0$). Know by Rellich's lemma: $\mathcal{F}g=0\implies u_{\mathrm{H},g}^s=0$ in $\mathbb{R}^2\setminus\overline{D}$.

Idea: Decompose the scattered field $u_g^s = u_{{\sf H},g}^s + u_{{\sf M},g}^s$ of the farfield ${\cal F}g$:

- ▶ $u_{{\rm H},g}^s$ satisfies the Helmholtz equation $(\Delta+\kappa^2)u_{{\rm H},g}^s=0$ in D and governs the far field.
- $u^s_{\mathsf{M},g}$ satisfies a modified Helmholtz equation $(\Delta \kappa^2)u_\mathsf{M} = 0$ in $\mathbb{R}^2 \setminus \overline{D}$ and decays exponentially.

Clamped Transmission Problem:

$$(\Delta + \kappa^2)q = 0 \quad \text{in } D, \quad (\Delta - \kappa^2)p = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D}$$

and

$$q+p=0, \quad \partial_{\nu}q+\partial_{\nu}p=0, \quad \text{on } \Gamma$$

with $q=u_{\mathrm{H},g}^s$ and $p=u_{\mathrm{M},g}^s$

Key Point

If the only solution is q=p=0 (i.e., κ is **not** an eigenvalue of the clamped transmission problem), then ${\mathcal F}$ is injective. In other words, the far field uniquely determines the kernel.

Reciprocity and Dense Range of ${\mathcal F}$

Reciprocity Relation (Biharmonic Far-Field Pattern):

$$u^{\infty}(\hat{x}, d) = u^{\infty}(-d, -\hat{x})$$

(Follows from Green's representation theorem for far-field pattern and exponential decay of anti-Helmholtz component.)

Adjoint Relationship: The reciprocity identity implies:

$$(\mathcal{F}^*\varphi)(d) = \int_{\mathbb{S}^1} u^\infty(-d,-\hat{x})\,\varphi(\hat{x})\,ds(\hat{x}) = (\mathcal{F}\tilde{\varphi})(d), \quad \text{where } \tilde{\varphi}(\hat{y}) = \varphi(-\hat{y})$$

Conclusion: Know $\overline{\mathsf{Range}(\mathcal{F})} = \mathsf{Null}(\mathcal{F}^*)^{\perp}$, therefore:

Theorem (Injectivity and Density of \mathcal{F})

Assume κ is not an eigenvalue of the clamped transmission problem. Then the far-field operator

$$\mathcal{F}: L^2(\mathbb{S}^1) \to L^2(\mathbb{S}^1)$$

is injective and has dense range.

Outline of LSM

FarField Operator: $\mathcal{F}:L^2(\mathbb{S}^1)\to L^2(\mathbb{S}^1)$ defined by

$$\mathcal{F}g(\hat{x}) := \int_{\mathbb{S}^1} u^{\infty}(\hat{x}, d) g(d) ds(d).$$

Let us define for $(h_1,h_2)^{\top}\in H^{3/2}(\Gamma)\times H^{1/2}(\Gamma)$ the unique function $w\in H^1_{\mathrm{loc}}(\mathbb{R}^2\setminus\overline{D})$ satisfying

$$\begin{cases} \Delta^2 w - \kappa^4 w = 0 & \text{in } \mathbb{R}^2 \setminus \overline{D}, \\ w = h_1, \quad \partial_{\nu} w = h_2 & \text{on } \Gamma, \\ \lim_{r \to \infty} \int_{|x| = r} \left| \frac{\partial w}{\partial r} - i\kappa w \right|^2 ds = 0. \text{ (SRC)} \end{cases}$$
(1)

 $\Rightarrow Fg = w^{\infty}$ for w solving (1) with $(h_1, h_2)^{\top} = (v_g, \partial_{\nu} v_g)^{\top}$ on Γ , where

$$v_g(x) := \int_{\mathbb{S}^1} u^i(x, d) g(d) \, ds(d), \quad g \in L^2(\mathbb{S}^1), \quad x \in \mathbb{R}^2.$$

Outline of LSM

FarField Operator: $\mathcal{F}:L^2(\mathbb{S}^1) \to L^2(\mathbb{S}^1)$ defined by

$$\mathcal{F}g(\hat{x}) \coloneqq \int_{\mathbb{S}^1} u^{\infty}(\hat{x}, d) g(d) ds(d).$$

 \Rightarrow Considering the (compact) operator $\mathcal{H}:L^2(\mathbb{S}^1)\to H^{3/2}(\Gamma)\times H^{1/2}(\Gamma)$ defined by

$$Hg \coloneqq (v_g, \partial_{\nu} v_g)^{\top}$$

and the (compact) operator $\mathcal{G}: H^{3/2}(\Gamma) \times H^{1/2}(\Gamma) \to L^2(\mathbb{S}^1)$ by

$$\mathcal{G}(h_1, h_2)^{\top} \coloneqq w^{\infty},$$

then clearly:

$$\mathcal{F} = -\mathcal{G} \circ \mathcal{H}$$

Theorem: The operator $\mathcal{G}: H^{3/2}(\Gamma) \times H^{1/2}(\Gamma) \to L^2(\mathbb{S}^1)$, the clamped cavity D satisfies: a point $z \in D$ if and only if

$$\gamma e^{-i\kappa \hat{x}\cdot z} \in \mathsf{Range}(\mathcal{G}).$$

Main Theorem of LSM

Theorem: Assume κ is not an eigenvalue of the clamped transmission problem. Then the operator $\mathcal F$ is injective with dense range. Moreover, the following holds.

- ▶ If $z \in D$ and $\epsilon > 0$ given then there exists g_z^α such that $||\mathcal{F}g_z^\alpha \gamma e^{-i\kappa\hat{x}\cdot z}||_{L^2(\mathbb{S}^1)} \leq \epsilon$.
- $\blacktriangleright \text{ If } z \notin D \text{ then for all } g_z^\alpha \text{ such that } ||\mathcal{F} g_z^\alpha \gamma e^{-i\kappa \hat{x} \cdot z}||_{L^2(\mathbb{S}^1)} \leq \epsilon,$

$$\lim_{\alpha \to 0} ||g_z^\alpha|| = \infty.$$

 \Rightarrow Gives a "characterization" of D in terms of nearby solutions of

$$\mathcal{F}g_z \simeq \gamma e^{-i\kappa \hat{x}\cdot z}$$

Drawbacks: this is not constructive . . .

- \blacktriangleright Theorem doesn't provide how to construct $g_z^\alpha.$ In practice we use a regularization scheme.
- ▶ Have sufficient but not necessary criteria for recovering D. How does $z \mapsto ||g_z||_{L^2(\mathbb{S}^1)}$ behave inside D? (In practice, it's finite).

Numerical Implementation

A regularization is needed to solve the far-field equation, e.g., we used Tikhonov reg. with $\alpha=10^{-6}$ in all reconstructions

$$(\alpha I + F_d^* F_d) g_z^{\alpha} = F_d^* \phi_z$$

▶ Dimension of discretized matrix is based on the number N of sources/receivers. We selected a 250-by-250 grid for each construction.

Example: 30 sources/receivers yields a 30-by-30 matrix F_d

 $ightharpoonup F_d = [u^{\infty}(\hat{x}_i, \hat{y}_j)]_{i,j=1}^d$. Discretize so that

$$\hat{x}_i = \hat{y}_j = (\cos \theta_i, \sin \theta_j), \quad \theta_i = 2\pi(i-1)/d, i = 1, \dots, d.$$

We used Li and Dong's boundary integral equation method to approximate the discretized far-field operator F_d .

► Add noise to test the stability of the LSM

$$F_d^{\delta} = [F_{i,j}(1 + \delta E_{i,j})]_{i,j=1}^d, \quad ||E||_2 = 1.$$

 $E \in \mathbb{C}^{d \times d}$ is a matrix with random entries, $0 < \delta \ll 1$ relative noise level

LSM Algorithm

The LSM reformulates the problem of determining the shape of the cavity D as the calculation of the indicator function g_z^{α} . The overall computational steps are summarized below:

Algorithm 1 Linear Sampling Method (LSM)

- 1: Choose a cutoff parameter $\zeta > 0$, and select a mesh \mathcal{M} of sampling points in a region Ω that contains the cavity D;
- 2: For each sampling point $z \in \mathcal{M}$, compute an approximate solution g_z^{α} to the far-field equation using Tikhonov regularization with Morozov discrepancy principle;
- 3: Classify z as inside D if $1/||g_z^\alpha||_{L^2(\mathbb{S}^1)}>\zeta$, else outside.

Selected Numerical Result: Recovering the Apple-Shaped Cavity

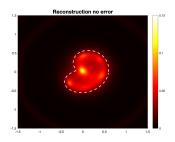


Figure: Recovering the Apple-Shaped Cavity with $\kappa=2\pi;$ no noise; 30 incident and observation directions; 250×250 grid

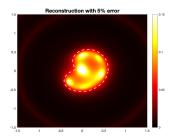


Figure: Recovering the Apple-Shaped Cavity with $\kappa=2\pi;$ noise $\delta=0.05;$ 30 incident and observation directions; 250×250 grid

Parametrization of Apple.
$$\gamma(t) = \frac{0.55(1+0.9\cos t+0.1\sin 2t}{1+0.75\cos t}(\cos t,\sin t)$$

Numerical Result: Recovering the $\Gamma \in C^2$ Peach-Shaped Cavity

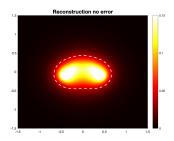


Figure: Recovering the Peach-Shaped Cavity with $\kappa=\pi$; no noise; 30 incident and observation directions; 250×250 grid

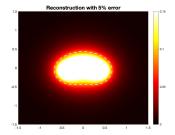
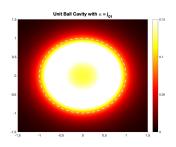


Figure: Recovering the Peach-Shaped Cavity with $\kappa=\pi$; noise $\delta=0.05;\,30$ incident and observation directions; 250×250 grid

Parametrization of Peach. $\gamma(t) = 0.22(\cos^2 t \sqrt{1 - \sin t} + 2)(\cos t, \sin t)$

Numerical Result: Recovering the Unit Disk at Dirichlet eigenvalues



Unit Ball Cavity with $\kappa = j_{02}$

Figure: Reconstruction of the unit disk using the LSM. (a) $\kappa = j_{01}$

Figure: (b)Reconstruction of the unit disk using the LSM. $\kappa = i_{02}$

Consider the case where $\kappa^2 = \lambda$, with λ being an eigenvalue of the Dirichlet problem:

$$-\Delta \phi = \lambda \phi$$
 in $B_1(0)$, $\phi = 0$ on $\partial B_1(0)$.

The eigenvalues of this problem are given by $\lambda_{mn}=j_{mn}^2$, where j_{mn} denotes the m-th positive zero of the Bessel function $J_n(r)$ of order n. j_{01} and j_{02} are the first and second positive zeros of the Bessel function $J_0(r)$

Conclusion & Future Work

Key Results:

- ► Applied **Linear Sampling Method (LSM)** to biharmonic scattering.
- \blacktriangleright Relaxed assumptions on the wavenumber κ compared to prior work.
- ► Modified framework in the same contribution for **partial data** (not covered in this talk).

Ongoing Work:

- **Factorization Method** (Kirsch) for rigorous necessary and sufficient conditions for recovery for **clamped obstacles**.
- ► Extension to **penetrable obstacles**: challenges involve coupled transmission conditions; goal is a fully rigorous LSM/FM framework for these cases.