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Inverse Problems for Waves

▶ Send waves to an object with unknown properties.

▶ Measure scattered waves.

▶ Task: Deduce information about the object (that’s the inverse problem)
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Wave Interaction with Thin Elastic Plates

▶ Thin elastic plate: Kirchhoff-Love theory pure-bending case, thickness H small
compared with the dimensions defining the span of the surface in (x, y)
(time-harmonic biharmonic wave equation)

▶ Cavity (unknown shape) perturbs vibrations

▶ Task: Reconstruct cavity shape from scattered plate waves

Thin Plate

Cavity

ui us
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Selected Application: Structural Health Monitoring

⇝ Structural Health monitoring (SHM) systems use
sensors and data analysis to assess structures,
detect damage, and enhance safety

▶ early detection of delaminations & cracks

▶ safety enhancement

▶ reduction of maintenance intervals

▶ cost saving by optimal assembly of sensors &
actuators
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Biharmonic Clamped Scattering Problem

▶ Scattering of time-harmonic flexural waves by a 2D cavity in a thin plate D with
boundary Γ = ∂D:

∆2u(x)− κ4u(x) = 0, x ∈ R2 \D,

u(x) = 0, and ∂νu(x) = 0, x ∈ Γ

lim
|x|→∞

√
|x|

(
∂us(x)

∂|x|
− iκus(x)

)
= 0.

▶ κ :wavenumber (∼ frequency)

▶ u = ui + us :total wave, ui :incident wave, us :scattered wave

▶ Incident plane wave: ui(x) = eiκx·d, d ∈ S1 :incident direction.

▶ Clamped boundary conditions given by Cauchy data (Dirichlet problem)– keeps
edges of the vibrating plate fixed.

▶ Well-posed: Bourgeouis-Hazard 2019, Dong-Li 2024.
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Far field measurements & inverse problem

▶ Far field asymptotic expansion.

us(x) =
eiκ|x|
√
x

u∞(x̂) +O(|x|−3/2), |x| → ∞, x̂ :=
x

|x|

u∞(x̂) = u∞(x̂, d) :the far field pattern of us (measured data)

▶ The inverse problem: reconstruct D from measured far field patterns u∞(x̂, d, κ)
for all x̂, d ∈ S1 at a fixed frequency κ.

▶ On the uniqueness: Dong-Li 2024.
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Biharmonic Wave Decomposition

The biharmonic scattered field us can be split into two simpler pieces:

us = us
H + us

M,

where

▶ us
H: the Helmholtz component, satisfies

∆us
H + κ2us

H = 0, R2 \D

▶ us
M: the modified Helmholtz component, satisfies

∆us
M − κ2us

M = 0, R2 \D

Key idea: Instead of tackling a single fourth-order PDE, we reduce the problem to two
coupled second-order equations by factoring ∆2 − κ4 = (∆− κ2)(∆− κ2).
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Coupled Scattering System

The biharmonic scattering problem can be reformulated as a coupled system of
radiating solutions (us

H, u
s
M):{
∆us

H + κ2us
H = 0,

∆us
M − κ2us

M = 0,
in R2 \D,

with boundary conditions on ∂D:

us
H + us

M = −ui, ∂νu
s
H + ∂νu

s
M = −∂νu

i.

Key idea: us
M decays exponentially at infinity, so only us

H contributes to the far field.
This reduction to a coupled second-order system greatly simplifies analysis and
computation.

|us
H| = O(r−1/2) and |uM|s = O(e−κr)

as r = |x| → ∞. Moreover,
u∞ = u∞

H
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Sampling Methods

Examples of sampling methods. Linear Sampling Method (Colton-Kirsch, 1996),
Factorization Method (Kirsch 1998), Probe Method (Potthast, 2001), Reciprocity
Gap Method (Colton-Haddar, 2005),...)

Principle: the idea is to construct an indicator test function I(z) that will test
whether a sampling point z is in the interior or exterior of the scatterer (i.e. I(z) ≈ 1
inside scatterer, I(z) ≈ 0 outside scatterer).

(+) Non-iterative, the computation of I does not require a forward solver.
(-) Requires a large amount of multi-static data (many transmitters-receivers).
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Prior Work on Sampling Methods for Biharmonic Scattering

▶ LSM: Near-field approach (Bourgeois, B. Chapuis & A. Recoquillay, (2020))

Uses near-field measurements: boundary measurements with point sources and dipoles.
they recovered cavities in a clamped and free plate
Limitation: Requires more dense measurement data.

▶ LSM: Far-field approach (Guo, J., Long, Y., Wu, Q., Li, J., (2024)

Uses far-field measurements
their analysis required excluding Dirichlet eigenvalues of the negative Laplacian &
auxiliary eigenvalue problem.

▶ Direct Sampling Method (DSM) with Far-Field Data (Harris, I., Lee, H., Li,
P.(2025))

recovered clamped data; their method more robust towards noise
their method enables resolution analysis of for reconstructions

▶ Methods based on reverse time migration (RTM) (Zhu, T. & Ge, Z. (2025))

applied to four types of boundary conditions on the obstacle
incorporated phased and phaseless measurement data (near-field/far-field)

Our contribution: - Strengthened LSM analysis with far-field measurements that
relaxes previous assumptions. - Applies LSM framework without excluding Dirichlet
eigenvalues. - Provides a more general reconstruction methodology for the biharmonic
case. - Our contribution also modifies method to incorporate partial data (not in this
talk!)
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Linear Sampling Method (LSM) — Core Idea
Goal: Determine whether a sampling point z ∈ R2 lies inside the unknown cavity
D ⊂ R2 by solving a system of ill-posed linear integral equations.

LSM Equation:

Fgz = γe−iκx̂·z , (Fgz)(x̂) :=

∫
S1

u∞(x̂, d) gz(d) ds(d), g ∈ L2(S1)

Where:
▶ F : Far-field operator mapping weights gz to superpositions of measured data.
▶ γe−iκx̂·z : Far-field pattern of a point source at the sampling point z.

▶ γ = − 1
2κ2

eiπ/4
√
8πκ

is a constant arising from the fundamental solution

Sampling Principle:
▶ Feasible (regularized) solutions gz exist with small norm if and only if z ∈ D.
▶ Indicator: Plotting ∥gz∥L2 reveals the support of D.

D

z
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Ill-posedness and Approximate Solvability in LSM

Issue: The LSM equation
Fgz = γe−iκx̂·z

is ill-posed because the far-field operator F : L2(S1) → L2(S1) is compact.

Why? Well-known that the The kernel u∞(x̂, d) of F is analytic in both variables
(x̂, d) ∈ S1 × S1, leading to smoothing behavior and thus compactness.

Approximate Solvability Condition (Key Property)

For the LSM to function as a reliable indicator method, we want:

F is injective with dense range in L2(S1).

This allows us to use regularized solutions gz to test membership of z ∈ D.

Interpretation: While exact solutions gz may not exist, we can seek approximate
solutions whose norms reveal geometric information about the scatterer.
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Injectivity via Clamped Transmission Problem
Goal: Show that if the far-field vanishes, the corresponding Herglotz kernel g must be
zero (Fg = 0 ⇒ g = 0). Know by Rellich’s lemma: Fg = 0 =⇒ us

H,g = 0 in R2 \D.

Idea: Decompose the scattered field us
g = us

H,g + us
M,g of the farfield Fg:

▶ us
H,g satisfies the Helmholtz equation (∆ + κ2)us

H,g = 0 in D and governs the far

field.

▶ us
M,g satisfies a modified Helmholtz equation (∆− κ2)uM = 0 in R2 \D and

decays exponentially.

Clamped Transmission Problem:

(∆ + κ2)q = 0 in D, (∆− κ2)p = 0 in R2 \D

and
q + p = 0, ∂νq + ∂νp = 0, on Γ

with q = us
H,g and p = us

M,g

Key Point

If the only solution is q = p = 0 (i.e., κ is not an eigenvalue of the clamped
transmission problem), then F is injective. In other words, the far field uniquely
determines the kernel.
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Reciprocity and Dense Range of F

Reciprocity Relation (Biharmonic Far-Field Pattern):

u∞(x̂, d) = u∞(−d,−x̂)

(Follows from Green’s representation theorem for far-field pattern and exponential
decay of anti-Helmholtz component.)

Adjoint Relationship: The reciprocity identity implies:

(F∗φ)(d) =

∫
S1

u∞(−d,−x̂)φ(x̂) ds(x̂) = (Fφ̃)(d), where φ̃(ŷ) = φ(−ŷ)

Conclusion: Know Range(F) = Null(F∗)⊥, therefore:

Theorem (Injectivity and Density of F)

Assume κ is not an eigenvalue of the clamped transmission problem. Then the
far-field operator

F : L2(S1) → L2(S1)

is injective and has dense range.
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Outline of LSM

FarField Operator: F : L2(S1) → L2(S1) defined by

Fg(x̂) :=

∫
S1

u∞(x̂, d) g(d) ds(d).

Let us define for (h1, h2)⊤ ∈ H3/2(Γ)×H1/2(Γ) the unique function
w ∈ H2

loc(R
2 \D) satisfying

∆2w − κ4w = 0 in R2 \D,

w = h1, ∂νw = h2 on Γ,

lim
r→∞

∫
|x|=r

∣∣∣∣∂w∂r − iκw

∣∣∣∣2 ds = 0. (SRC)

(1)

⇒ Fg = w∞ for w solving (1) with (h1, h2)⊤ = (vg , ∂νvg)⊤ on Γ, where

vg(x) :=

∫
S1

ui(x, d)g(d) ds(d), g ∈ L2(S1), x ∈ R2.
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Outline of LSM

FarField Operator: F : L2(S1) → L2(S1) defined by

Fg(x̂) :=

∫
S1

u∞(x̂, d) g(d) ds(d).

⇒ Considering the (compact) operator H : L2(S1) → H3/2(Γ)×H1/2(Γ) defined by

Hg := (vg , ∂νvg)
⊤

and the (compact) operator G : H3/2(Γ)×H1/2(Γ) → L2(S1) by

G(h1, h2)
⊤ := w∞,

then clearly:
F = −G ◦ H

Theorem: The operator G : H3/2(Γ)×H1/2(Γ) → L2(S1), the clamped cavity D
satisfies: a point z ∈ D if and only if

γ e−iκx̂·z ∈ Range(G).
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Main Theorem of LSM

Theorem: Assume κ is not an eigenvalue of the clamped transmission problem. Then
the operator F is injective with dense range. Moreover, the following holds.

▶ If z ∈ D and ϵ > 0 given then there exists gαz such that
||Fgαz − γe−iκx̂·z ||L2(S1) ≤ ϵ.

▶ If z /∈ D then for all gαz such that ||Fgαz − γe−iκx̂·z ||L2(S1) ≤ ϵ,

lim
α→0

||gαz || = ∞.

⇒ Gives a “characterization” of D in terms of nearby solutions of

Fgz ≃ γe−iκx̂·z

Drawbacks: this is not constructive . . .

▶ Theorem doesn’t provide how to construct gαz . In practice we use a regularization
scheme.

▶ Have sufficient but not necessary criteria for recovering D. How does
z 7→ ||gz ||L2(S1) behave inside D? (In practice, it’s finite).
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Numerical Implementation

▶ A regularization is needed to solve the far-field equation, e.g., we used Tikhonov
reg. with α = 10−6 in all reconstructions

(αI + F ∗
d Fd)g

α
z = F ∗

d ϕz

▶ Dimension of discretized matrix is based on the number N of sources/receivers.
We selected a 250-by-250 grid for each construction.

Example: 30 sources/receivers yields a 30-by-30 matrix Fd

▶ Fd = [u∞(x̂i, ŷj)]
d
i,j=1. Discretize so that

x̂i = ŷj = (cos θi, sin θj) , θi = 2π(i− 1)/d, i = 1, . . . , d.

We used Li and Dong’s boundary integral equation method to approximate the
discretized far-field operator Fd.

▶ Add noise to test the stability of the LSM

F δ
d = [Fi,j(1 + δEi,j)]

d
i,j=1 , ||E||2 = 1.

E ∈ Cd×d is a matrix with random entries, 0 < δ ≪ 1 relative noise level
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LSM Algorithm

The LSM reformulates the problem of determining the shape of the cavity D as the
calculation of the indicator function gαz . The overall computational steps are
summarized below:

Algorithm 1 Linear Sampling Method (LSM)

1: Choose a cutoff parameter ζ > 0, and select a mesh M of sampling points in a
region Ω that contains the cavity D;

2: For each sampling point z ∈ M, compute an approximate solution gαz to the far-
field equation using Tikhonov regularization with Morozov discrepancy principle;

3: Classify z as inside D if 1/||gαz ||L2(S1) > ζ, else outside.
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Selected Numerical Result: Recovering the Apple-Shaped Cavity

Figure: Recovering the Apple-Shaped Cavity with
κ = 2π; no noise; 30 incident and observation
directions; 250 × 250 grid

Figure: Recovering the Apple-Shaped Cavity with
κ = 2π; noise δ = 0.05; 30 incident and
observation directions; 250 × 250 grid

Parametrization of Apple. γ(t) =
0.55(1+0.9 cos t+0.1 sin 2t

1+0.75 cos t
(cos t, sin t)
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Numerical Result: Recovering the Γ ∈ C2 Peach-Shaped Cavity

Figure: Recovering the Peach-Shaped Cavity with
κ = π; no noise; 30 incident and observation
directions; 250 × 250 grid

Figure: Recovering the Peach-Shaped Cavity with
κ = π; noise δ = 0.05; 30 incident and
observation directions; 250 × 250 grid

Parametrization of Peach. γ(t) = 0.22(cos2 t
√
1− sin t+ 2)(cos t, sin t)

General Ozochiawaeze1 Isaac Harris1 Peijun Li2 Strengthened LSM for Biharmonic Wave Scattering



Introduction
Linear Sampling Method Analysis

Selected Numerical Results

Numerical Result: Recovering the Unit Disk at Dirichlet eigenvalues

Figure: Reconstruction of the unit disk using the
LSM. (a) κ = j01

Figure: (b)Reconstruction of the unit disk using
the LSM. κ = j02

Consider the case where κ2 = λ, with λ being an eigenvalue of the Dirichlet problem:

−∆ϕ = λϕ in B1(0), ϕ = 0 on ∂B1(0).

The eigenvalues of this problem are given by λmn = j2mn, where jmn denotes the
m-th positive zero of the Bessel function Jn(r) of order n. j01 and j02 are the first
and second positive zeros of the Bessel function J0(r)
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Conclusion & Future Work

Key Results:

▶ Applied **Linear Sampling Method (LSM)** to biharmonic scattering.

▶ Relaxed assumptions on the wavenumber κ compared to prior work.

▶ Modified framework in the same contribution for **partial data** (not covered in
this talk).

Ongoing Work:

▶ **Factorization Method** (Kirsch) for rigorous necessary and sufficient
conditions for recovery for **clamped obstacles**.

▶ Extension to **penetrable obstacles**: challenges involve coupled transmission
conditions; goal is a fully rigorous LSM/FM framework for these cases.
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