A linear sampling method for recovering a clamped cavity in a thin plate Purdue Graduate Research Day

General Ozochiawaeze

Department of Mathematics Purdue University

December 15, 2024

Overview

2 Reconstruction Methods

Iinear Sampling Method Justification

Selected Numerical Results

Ongoing Future Work

イロト イボト イヨト イヨト

Inverse Shape Problem

- Send a wave and observe the reflected wave by an unknown obstacle
- Question: What information about the obstacle can one extract from the observed wave?
- Type of waves: flexural waves in elastic plates (biharmonic plate equation)
- **Applications:** nondestructive testing and designing devices for remote sensing, energy harvesting, and vibration isolation.

< 回 > < 三 > < 三 >

Model Equation for Thin Plate Bending

Model of out-of-plane displacement in a thin elastic plate

$$\mathcal{D}\Delta^2 W + \rho h \frac{\partial^2 W}{\partial t^2} = 0$$

•
$$\mathcal{D} \coloneqq \frac{Eh^3}{12(1-\nu^2)}$$
: flexural rigidity

- E > 0: Young's modulus
- $\nu \in [0, \frac{1}{2})$: Poisson's ratio
- h: thickness
- ρ: density of material

Time-Harmonic Dependency: $W(x,t) = \operatorname{Re}\{u(x)e^{-i\omega t}\}$

Time-Harmonic Biharmonic Plate Equation

$$\Delta^{2}u - \kappa^{4}u = 0, \quad \kappa^{2} = \sqrt{\frac{\rho h \omega}{D}} : \text{ wave number}$$

Direct and Inverse Scattering of Biharmonic Waves

Problem (The Direct Clamped Cavity Scattering Problem)

We consider the time-harmonic biharmonic scattering problem

- **9** $D \subset \mathbb{R}^2$ is a clamped (fixed) cavity with $\partial D \in C^{\infty}(\mathbb{R}^2)$
- **(a)** The cavity receives illumination from the incident plane wave $u^i(x) = \exp(i\kappa x \cdot d)$

The total field $u = u^i + u^s \in H^2_{loc}(\mathbb{R}^2)$ satisfies, with r = |x|,

$$\begin{cases} \Delta^2 u - \kappa^4 u = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D} \\ u = 0, \quad \partial_n u = 0 \quad \text{on } \partial D \\ \lim_{r \to \infty} \sqrt{r} \left(\partial_r u^s - i\kappa u^s \right) = 0, \quad \lim_{r \to \infty} \sqrt{r} \left(\partial_r \Delta u^s - i\kappa \Delta u^s \right) = 0 \text{ (SRC)} \end{cases}$$
(1)

Remark

Let $u^i = \exp(i\kappa x \cdot d)$ then the radiating scattered field $u^s(x, d; \kappa)$ depends on the incident direction d and wave number k.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Well-posedness of Direct Clamped Cavity Scattering Problem

The well-posedness of the direct clamped cavity scattering problem has been studied:

Variational Method & Riesz-Fredholm theory

Bourgeouis, L. and Hazard, C. (2020), On Well-Posedness of Scattering Problems in a Kirchhoff-Love Infinite Plate, SIAM Journal on Applied Mathematics 80(3), 1546-1556.

Boundary Integral Equation Method & Riesz-Fredholm Theory

Li, P. and Dong, H. (2024), A Novel Boundary Integral Formulation for the Biharmonic Wave Scattering Problem, Journal of Scientific Computing 98(42), 1-29.

く 同 と く ヨ と く ヨ と

Inverse Clamped Cavity Problem

The outgoing scattered field, also known as the radiating solution, satisfies

$$u^s(x) = \frac{e^{i\kappa r}}{\sqrt{r}} u^\infty(\hat{x}) + O\left(\frac{1}{r^{3/2}}\right) \quad \text{as } r = |x| \to \infty, \quad \hat{x} = x/r$$

 $u^\infty(\hat{x}):\mathbb{S}^1\to\mathbb{C}$ defined on the unit sphere is called the far-field pattern. Now define the far-field operator as

Definition (Far-Field Operator (aka Relative Scattering Operator))

$$\mathcal{F}\,:\,L^2(\mathbb{S}^1)\to L^2(\mathbb{S}^1),\quad (\mathcal{F}g)(\hat{x})=\int_{\mathbb{S}^1}u^\infty(\hat{x},d)g(d)\,ds(d).$$

 $\mathcal{F}g = u_g^{\infty}, \text{ where } u_g^{\infty} \text{ is the far-field pattern of the scattered field } u_g^s \text{ with incident} \\ \text{wave } v_g(x) \coloneqq \int_{\mathbb{S}^1} g(d) e^{i\kappa x \cdot d} \, ds(d) \text{ (Hergotz wave function)} \\ \text{Inverse clamped cavity problem: Given } \mathcal{F} \text{ for a range of wave numbers } \kappa \text{ obtain} \\ \text{qualitative information about the clamped cavity } D \text{ in a thin elastic plate.} \end{cases}$

・ コット うちょう マルマン しょうしょう

Biharmonic Wave Decomposition

Consider the two auxiliary functions

$$u_H^s = -\frac{1}{2\kappa^2}(\Delta u^s - \kappa^2 u^s), \quad u_M^s = \frac{1}{2\kappa^2}(\Delta u^s + \kappa^2 u^s)$$

 u^s_H is the Helmholtz component of u^s and u^s_M is the modified Helmholtz component of u^s such that

$$u^s=u^s_H+u^s_M,\quad \Delta u^s=\kappa^2(u^s_M-u^s_H)$$

 \boldsymbol{u}_{H}^{s} and \boldsymbol{u}_{M}^{s} satisfy the Helmholtz equation and modified Helmholtz equation respectively

$$\Delta u_{H}^{s} + \kappa^{2} u_{H}^{s} = 0, \quad \Delta u_{M}^{s} - \kappa^{2} u_{M}^{s} = 0 \quad \text{in } \mathbb{R}^{2} \setminus \overline{D}$$

・ロト ・ 一下・ ・ ヨト・

э.

Biharmonic Wave Decomposition

We can reformulate the scattering problem (1) as

$$\begin{cases} \Delta u_H^s + \kappa^2 u_H^s = 0, \quad \Delta u_M^s - \kappa^2 u_M^s = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D} \\ u_H^s + u_M^s = -u^i, \quad \partial_n u_H^s + \partial_n u_M^s = -\partial_n u^i \quad \text{on } \partial D \\ \lim_{r \to \infty} \sqrt{r} \left(\partial_r u_H^s - i\kappa u_H^s \right) = 0 \\ \lim_{r \to \infty} \sqrt{r} \left(\partial_r u_M^s - i\kappa u_M^s \right) = 0, \quad r = |x| \end{cases}$$
(2)

イロン イヨン イヨン イヨン

Biharmonic Wave Decomposition

We can reformulate the scattering problem (1) as

$$\begin{cases} \Delta u_H^s + \kappa^2 u_H^s = 0, \quad \Delta u_M^s - \kappa^2 u_M^s = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D} \\ u_H^s + u_M^s = -u^i, \quad \partial_n u_H^s + \partial_n u_M^s = -\partial_n u^i \quad \text{on } \partial D \\ \lim_{r \to \infty} \sqrt{r} \left(\partial_r u_H^s - i\kappa u_H^s \right) = 0 \\ \lim_{r \to \infty} \sqrt{r} \left(\partial_r u_M^s - i\kappa u_M^s \right) = 0, \quad r = |x| \end{cases}$$
(2)

Remark (Exponential Decay of u_M^s)

 u_M^s and $\partial_r u_M^s$ exhibit exponential decay as $r = |x| \to \infty$ for the fixed wavenumber κ as $\kappa r \to \infty$. Specifically, u_M^s satisfies

$$u^s_M(x) = O\left(\frac{e^{-kr}}{\sqrt{r}}\right), \, r \to \infty$$

< ロ > < 同 > < 回 > < 回 > .

Far-Field Pattern of the Biharmonic Scattered Field

Because of the exponential decay of the evanescent part u^s_M and $\partial_n u^s_M$, the far-field pattern contains only information about the Helmholtz component, thus,

$$u^{\infty}(\hat{x}) = u_H^{\infty}(\hat{x}),$$

up to a constant depending on $\kappa.$ By Rellich's lemma and exp. decay of $u^s_M\text{,}$ we obtain

Lemma (P.Li & H.Dong, 2023)

if $u^s \in C^4(\mathbb{R}^2 \setminus \overline{D})$ satisfies

$$\lim_{r \to \infty} \int_{|x|=r} |u^s(x)|^2 \, ds = 0,$$

then $u_H^s = 0$ in $\mathbb{R}^2 \setminus \overline{D}$. Thus,

$$u^{\infty}=0\implies u^s_H=0 \text{ in } \mathbb{R}^2\setminus\overline{D}.$$

(日) (周) (ヨ) (ヨ) (ヨ)

Reconstruction Methods

- Iterative methods to determine D (expensive optimization; a good initial guess is needed; only one or a few incident waves are needed; reconstructions are reasonably good)
- Obmain decomposition methods (solve an ill-posed linear integral equation first to reduce computational expense, then optimize)
- Oirect imaging methods (avoid optimization entirely, solve many ill-posed integral equations, requires a lot of multistatic data but no a priori information; partial qualitative information about the scatterer is obtained)

イロト イポト イヨト イヨト

Reconstruction of D via Direct Imaging Methods

Remark (Shape Reconstruction)

Direct Imaging Methods: the idea is to construct an indicator test function I that will test whether a point z lies inside or outside the scatterer. **Benefits:** can reconstruct the shape of the scatterer in a computational simple manner with **no a priori information**.

- Assume only the location and shape of the object is needed (e.g., looking for a crack or cavity).
- $\bullet\,$ Based on model, derive an indicator test function I(z), depending on coordinates, so that

$$T(z) = \begin{cases} 0, & z \notin \text{ object} \\ 1, & z \in \text{ object} \end{cases}$$

• I(z) must be fast to compute from the scattered or far-field data.

1

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Categorizing Direct Imaging Methods

Figure: Approaches to Qualitative Imaging

- '96 Colton Kirsch: linear sampling method, factorization (point sampling in grid)
- '98 Ikehata: probing method (curve); '00 Potthast: singular source method (curve/needle)
- ... Luke, Potthast, Sylvester, Kusiak, Ikehata: range test, no response test, enclosure method (sets/planes)

くぼう くほう くほう

Results on Inverse Shape Problem for Biharmonic Plate Equation

- L. Bourgeouis & A. Recoquillay (2020): recovery of clamped cavities and cavities in a free plate with the linear sampling method with near-field measurements (boundary measurements)
 Disadvantage: uses far more multistatic data, namely scattered field and normal derivative of scattered field for point source and dipole
- Y. Chang & Y. Guo (2023): recovery of clamped cavities in a thin elastic plate with near field measurements via the domain decomposition method (optimization method)
- I. Harris, P. Li, & H. Lee (2024): recovery and resolution analysis of clamped cavities with the direct sampling method
- A. Karageorghis & D. Lesnic (2024): method of fundamental solutions (iterative method) for recovering clamped and free plate cavities with near field measurements

・ロト ・ 一下・ ・ ヨト・

Uniqueness Result

Theorem (P. Li & H. Dong, 2023)

Let D_1 and D_2 be two cavities meeting the clamped boundary conditions, with corresponding far-field patterns u_1^∞ and u_2^∞ satisfying

$$u_1^{\infty}(\hat{x}, d) = u_2^{\infty}(\hat{x}, d), \quad \forall \hat{x}, d \in \mathbb{S}^1.$$

Then $D_1 = D_2$.

- This result guarantees uniqueness of the inverse cavity scattering problem with clamped boundary conditions.
- Proof of the result is based on the reciprocity relations and correspondences of the far-field patterns with respective scattered fields generated by point sources.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Idea Behind Linear Sampling Method

Qualitative/Sampling Scheme Goal: want to

• recover shape and location of the cavity using an indicator function based on an integral equation solution

Sampling: Collect the far-field data u^∞ and solve an ill-posed linear integral equation for each sample point z

くぼう くほう くほう

Core of LSM - The Far-Field Equation

Far-Field Equation

$$\mathcal{F}g_{z}(\hat{x}) = \Phi^{\infty}(\hat{x}, z), \quad \Phi^{\infty}(\hat{x}, z) = -\frac{1}{2\kappa^{2}} \frac{e^{i\pi/4}}{\sqrt{8\kappa\pi}} e^{-i\kappa x \cdot z}, \, g_{z} \in L^{2}(\mathbb{S}^{1}), \, z \in \mathbb{R}^{2}$$

- $\Phi^\infty(\cdot,z)={\rm FF}$ pattern of the point source $\Phi(\cdot,z)$ centered at sampling point z
- $\Phi(\cdot,z)$ satisfies $(\Delta^2 \kappa^4)\Phi(\cdot,z) = (\Delta \kappa^2)(\Delta + \kappa^2)\Phi(\cdot,z) = -\delta(\cdot z)$ in \mathbb{R}^2 with

$$\begin{split} \Phi(x,z) &= \frac{i}{8\kappa^2} \left(H_0^1(\kappa |x-z|) + \frac{2i}{\pi} K_0(\kappa |x-z|) \right), \quad x \neq z \\ &= \frac{1}{2\kappa^2} (\Phi_H(x,z) - \Phi_M(x,z)), \end{split}$$

where $H_0^{(1)}$ and K_0 are the Hankel functions of the first kind and MacDonald's function, respectively.

• \mathcal{F} is a compact operator, so the FF equation is **ill-posed**.

・ 同 ト ・ ヨ ト ・ ヨ ト

э.

Approximate Solvability Condition of Far-Field Equation

Want an approximate solvability condition for the FF equation:

Problem

Approximate Solvability Condition: want to show \mathcal{F} has dense range in $L^2(\mathbb{S}^1)$; that is,

$$\overline{\text{Range }\mathcal{F}}^{||\cdot||_{L^2(\mathbb{S}^1)}} = L^2(\mathbb{S}^1)$$

By Hahn-Banach Theorem, this is equivalent to showing the adjoint operator \mathcal{F}^* is injective. By a result called the **reciprocity relation**, the approximate solvability condition reduces to showing \mathcal{F} is injective.

(1) マン・ (1) マン・ (1)

Approximate Solvability and Reciprocity Relation

Lemma (Reciprocity Relation)

 $u^{\infty}(\hat{x}, d) = u^{\infty}(-d, -\hat{x})$ for every $\hat{x}, d \in \mathbb{S}^1$.

Proof uses Green's representation formula for $u^\infty + {\rm exploits \; exp. \; decay \; of \; } u^s_M.$ Why is this useful?

$$\begin{split} (f,\mathcal{F}g)_{L^2(\mathbb{S}^1)} &= \int_{\mathbb{S}^1} \left(\overline{\int_{\mathbb{S}^1} u^{\infty}(\hat{x},d)g(d)\,ds(d)} \right) \, ds(\hat{x}) \\ &= \int_{\mathbb{S}^1} \left(\overline{\int_{\mathbb{S}^1} u^{\infty}(-d,-\hat{x})g(d)\,ds(d)} \right) \, ds(\hat{x}) \\ &= \left(\overline{u^{\infty}(-d,-\hat{x})}f(\hat{x})ds(\hat{x}),g \right)_{L^2(\mathbb{S}^1)}, \end{split}$$

so $\mathcal{F}^*g = \overline{R\mathcal{F}Rg}$ where $(Rf)(\hat{x}) := f(-\hat{x})$. Approximate Solvability: Suffices to show \mathcal{F} is injective!

(日) (周) (ヨ) (ヨ) (ヨ)

Assumption for Approximate Solvability

We want to determine when \mathcal{F} is injective. Suppose $\mathcal{F}g = u_g^\infty = 0$. Then by Rellich's lemma + exp. decay of the modified Helmholtz component,

$$u^s_{g,H}(x) = \int_{\mathbb{S}^1} u^s_H(x,d) g(d) \, ds(d) = 0 \, \text{ in } \mathbb{R}^2 \setminus \overline{D},$$

with

$$\begin{aligned} \Delta u^s_{g,M} &- \kappa^2 u^s_{g,M} = 0 \text{ in } \mathbb{R}^2 \setminus \overline{D}, \\ \Delta u^s_{g,H} &+ \kappa^2 u^s_{g,H} = 0 \text{ in } D, \end{aligned}$$
 (3)

and so on the boundary ∂D :

$$u_{g,M}^{s} + v_{g} = 0, \quad \partial_{n}(u_{g,M}^{s} + v_{g}) = 0.$$
 (4)

・ロト ・ 一下・ ・ ヨト・

3

Assume: $\kappa^2 \neq$ eigenvalue of (3)–(4) to ensure $v_g = 0$ on ∂D , so that g = 0. (Only want trivial solution pair)

Helpful Auxiliary Operators for Approximate Solvability

Define the Herglotz wave operator

$$\mathcal{H}: L^2(\mathbb{S}^1) \to H^{3/2}(\partial D) \times H^{1/2}(\partial D) : g \mapsto \begin{pmatrix} v_g \\ \partial_n v_g \end{pmatrix} \Big|_{\partial D},$$

where $v_g(x) = \int_{\mathbb{S}^1} e^{i\kappa x\cdot d}g(d)\,ds(d)$ is the Herglotz wave function. Then

$$\mathcal{F} = -\mathcal{GH}$$

- \mathcal{G} : boundary data \mapsto FF pattern (data-to-pattern operator)
- $\bullet \ {\mathcal H}$ is the Herglotz wave operator that maps g to the superposition of plane wave data on the boundary.
- By superposition $\mathcal{H}g$ induces the far-field pattern $\mathcal{F}g$

On Auxiliary Operator \mathcal{G}

- $\mathcal{G}: H^{3/2}(\partial D) \times H^{1/2}(\partial D) \to L^2(\mathbb{S}^1): (h_1, h_2)^\top \mapsto w^\infty$
 - $\begin{tabular}{ll} \bullet & w^\infty = {\rm far-field \ pattern \ of \ the \ unique \ radiating \ solution \ w \in H^2_{\rm loc}(\mathbb{R}^2 \setminus \overline{D}) \\ & {\rm satisfying \ } \end{tabular}$

$$\begin{cases} \Delta^2 w - \kappa^4 w = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D}, \\ w|_{\partial D} = h_1, \quad \partial_n w|_{\partial D} = h_2, \\ \lim_{r=|x|\to\infty} \sqrt{r} \left(\partial_r w - i\kappa w\right) = 0, \lim_{r=|x|\to\infty} \sqrt{r} \left(\partial_r \Delta w - i\kappa \Delta w\right) = 0 \end{cases}$$
(5)

② To show \mathcal{G} is injective, we need to assume that $\kappa^2 \neq$ eigenvalue of the mixed eigenvalue problem given by the pair $(p,q) = (w_M, u^i)$ satisfying

$$\begin{cases} \Delta p - \kappa^2 p = 0 \quad \text{in } \mathbb{R}^2 \setminus \overline{D}, \\ \Delta q + \kappa^2 q = 0 \quad \text{in } D, \\ p + q = 0, \quad \partial_n (p + q) = 0 \quad \text{on } \partial D, \\ \lim_{r = |x| \to \infty} \sqrt{r} \left(\partial_r p - i\kappa p \right) = 0, \end{cases}$$
(6)

・ロト ・ 一下・ ・ ヨト・

э.

Approximate Solvability of the FF equation

The following two lemmas ensure the approximate solvability condition of the far-field equation holds:

Lemma (G. Ozochiawaeze, 2024)

The auxiliary operator \mathcal{G} is compact with dense range on $L^2(\mathbb{S}^1)$. Moreover, if $\kappa^2 \neq$ eigenvalue of (6), then \mathcal{G} is injective. Finally, we have the following range characterization of the clamped cavity D:

 $z \in D \iff \Phi^{\infty}(\hat{x}, z) \in \mathsf{Range}(\mathcal{G}).$

Lemma (G. Ozochiawaeze, 2024)

 \mathcal{H} is compact and injective. If $\kappa^2 \neq$ eigenvalue of (6), then \mathcal{F} is injective. Thus, \mathcal{F} has dense range in $L^2(\mathbb{S}^1)$.

・ロト ・ 一下・ ・ ヨト・

Range Characterization of the Cavity D

The **linear sampling method** is a direct imaging method based on the following range characterization of the cavity D:

Lemma (Range Characterization of Clamped Cavity D)

 $z \in D$ if and only if $\Phi^{\infty}(\hat{x}, z) \in \mathsf{Range}(\mathcal{G})$.

This result follows by Rellich's lemma and justifies the choice of indicator test function of LSM:

$$I(z) \coloneqq \frac{1}{||g_z||_{L^2(\mathbb{S}^1)}} = \begin{cases} 0, \text{ if } z \in \mathbb{R}^2 \setminus D, \\ > 0, \text{ if } z \in D. \end{cases}$$

Moreover, $I(z) \rightarrow 0$ as $z \rightarrow \partial D$.

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Reconstruction of the Cavity D via the LSM

Theorem (The Linear Sampling Method)

Assume $\kappa \neq$ eigenvalue of the mixed eigenvalue problem (6). We have the following:

• Suppose $z \in D$. Given $\epsilon > 0$ there exists an approximate solution $g_{z,\epsilon} \in L^2(\mathbb{S}^1)$ to the far-field equation such that

$$||\mathcal{F}g_{z,\epsilon} - \Phi^{\infty}(\cdot, z)||_{L^2(\mathbb{S}^1)} < \epsilon.$$

Furthermore, $||g_{z,\epsilon}||_{L^2(\mathbb{S}^1)}$ is unbounded as $z \to \partial D$.

• Suppose $z \notin D$. Then the approximate solution of the far-field equation $g_{z,\epsilon}$ satisfies

 $||g_{z,\epsilon}||_{L^2(\mathbb{S}^1)}$ is unbounded as $\epsilon \to 0$, assuming that

$$||\mathcal{F}g_{z,\epsilon} - \Phi^{\infty}(\cdot, z)||_{L^2(\mathbb{S}^1)} \to 0 \quad \text{as } \epsilon \to 0.$$

イロト イポト イヨト イヨト

Numerical Scheme

- Construct a grid of 'sampling points' T in a region known to contain the cavity D. Choose a regularization parameter $\alpha > 0$ and cut-off constant c_0 .
- For each grid point $z_i \in \mathcal{T}$, solve the regularized far-field equation $(\alpha I + \mathcal{F}^* \mathcal{F})g_{z_i,\alpha} = \mathcal{F}^* \Phi^{\infty}(\hat{x}, z_i)$ (Tikhonov regularization)
- \bullet Construct a reconstruction M for D where

$$M \coloneqq \{z_i \in \mathcal{T} : ||g_{z_i,\alpha}||_{L^2(\mathbb{S}^1)} \le c_0\}$$

Choice of c_0 is heuristic; resolution improves with higher wave number. If we invert the indicator function, $c_0 = 0$.

Numerical Result: Recovering the Apple-Shaped Cavity

Figure: Recovering the Apple-Shaped Cavity with $\kappa=2\pi;$ no noise; 30 incident and observation directions; 250×250 grid

Figure: Recovering the Apple-Shaped Cavity with $\kappa = 2\pi$; noise $\delta = 0.02$; 30 incident and observation directions; 250×250 grid

くぼう くほう くほう

Numerical Result: Recovering the Peach-Shaped Cavity

Figure: Recovering the Peach-Shaped Cavity with $\kappa = \pi$; no noise; 30 incident and observation directions; 250×250 grid

Figure: Recovering the Peach-Shaped Cavity with $\kappa = \pi$; noise $\delta = 0.05$; 30 incident and observation directions; 250×250 grid

くぼう くほう くほう

Numerical Result: Recovering the Peanut-Shaped Cavity

Figure: Recovering the Peanut-Shaped Cavity with $\kappa = 2\pi$; no noise; 30 incident and observation directions; 250×250 grid

(<)</pre>

Numerical Result: Recovering the Peanut-Shaped Cavity

Reconstruction with 5% error, N=128

Figure: Recovering the Peanut-Shaped Cavity with $\kappa = \pi$; noise $\delta = 0.05$; 128 incident and observation directions; 250×250 grid

くぼう くほう くほう

Ongoing Future Work

- numerical implementation of the linear sampling method for other cavities (e.g., free plate, simply supported plate, roller supported) based on Neumann and mixed boundary conditions with far-field data
- modification of the LSM for reconstructing cavities with a single incident plane wave (single measurement) (i.e., will consider the extended sampling method)

< ロ > < 同 > < 回 > < 回 > .