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Inverse Shape Problem

Send a wave and observe the reflected wave by an unknown obstacle

Question: What information about the obstacle can one extract from the
observed wave?

Type of waves: flexural waves in elastic plates (biharmonic plate equation)

Applications: nondestructive testing and designing devices for remote sensing,
energy harvesting, and vibration isolation.
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Model Equation for Thin Plate Bending

Model of out-of-plane displacement in a thin elastic plate

D∆2W + ρh
∂2W

∂t2
= 0

D := Eh3

12(1−ν2)
: flexural rigidity

E > 0: Young’s modulus

ν ∈ [0, 1
2
): Poisson’s ratio

h: thickness

ρ: density of material

Time-Harmonic Dependency: W (x, t) = Re{u(x)e−iωt}

Time-Harmonic Biharmonic Plate Equation

∆2u− κ4u = 0, κ2 =

√
ρhω

D
: wave number
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Direct and Inverse Scattering of Biharmonic Waves

Problem (The Direct Clamped Cavity Scattering Problem)

We consider the time-harmonic biharmonic scattering problem

1 D ⊂ R2 is a clamped (fixed) cavity with ∂D ∈ C∞(R2)

2 The cavity receives illumination from the incident plane wave
ui(x) = exp (iκx · d)

The total field u = ui + us ∈ H2
loc(R

2) satisfies, with r = |x|,
∆2u− κ4u = 0 in R2 \D

u = 0, ∂nu = 0 on ∂D

lim
r→∞

√
r (∂ru

s − iκus) = 0, lim
r→∞

√
r (∂r∆us − iκ∆us) = 0 (SRC)

(1)

Remark

Let ui = exp (iκx · d) then the radiating scattered field us(x, d;κ) depends on the
incident direction d and wave number k.
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Well-posedness of Direct Clamped Cavity Scattering Problem

The well-posedness of the direct clamped cavity scattering problem has been studied:

Variational Method & Riesz-Fredholm theory
Bourgeouis, L. and Hazard, C. (2020), On Well-Posedness of Scattering Problems
in a Kirchhoff-Love Infinite Plate, SIAM Journal on Applied Mathematics 80(3),
1546-1556.

Boundary Integral Equation Method & Riesz-Fredholm Theory
Li, P. and Dong, H. (2024), A Novel Boundary Integral Formulation for the
Biharmonic Wave Scattering Problem, Journal of Scientific Computing 98(42),
1-29.
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Inverse Clamped Cavity Problem

The outgoing scattered field, also known as the radiating solution, satisfies

us(x) =
eiκr
√
r
u∞(x̂) +O

(
1

r3/2

)
as r = |x| → ∞, x̂ = x/r

u∞(x̂) : S1 → C defined on the unit sphere is called the far-field pattern.
Now define the far-field operator as

Definition (Far-Field Operator (aka Relative Scattering Operator))

F : L2(S1) → L2(S1), (Fg)(x̂) =

∫
S1

u∞(x̂, d)g(d) ds(d).

Fg = u∞
g , where u∞

g is the far-field pattern of the scattered field us
g with incident

wave vg(x) :=

∫
S1

g(d)eiκx·d ds(d) (Hergotz wave function)

Inverse clamped cavity problem: Given F for a range of wave numbers κ obtain
qualitative information about the clamped cavity D in a thin elastic plate.
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Biharmonic Wave Decomposition

Consider the two auxiliary functions

us
H = −

1

2κ2
(∆us − κ2us), us

M =
1

2κ2
(∆us + κ2us)

us
H is the Helmholtz component of us and us

M is the modified Helmholtz
component of us such that

us = us
H + us

M , ∆us = κ2(us
M − us

H)

us
H and us

M satisfy the Helmholtz equation and modified Helmholtz equation
respectively

∆us
H + κ2us

H = 0, ∆us
M − κ2us

M = 0 in R2 \D
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Biharmonic Wave Decomposition

We can reformulate the scattering problem (1) as

∆us
H + κ2us

H = 0, ∆us
M − κ2us

M = 0 in R2 \D

us
H + us

M = −ui, ∂nu
s
H + ∂nu

s
M = −∂nu

i on ∂D

lim
r→∞

√
r (∂ru

s
H − iκus

H) = 0

lim
r→∞

√
r (∂ru

s
M − iκus

M ) = 0, r = |x|

(2)

Remark (Exponential Decay of us
M )

us
M and ∂rus

M exhibit exponential decay as r = |x| → ∞ for the fixed wavenumber κ
as κr → ∞. Specifically, us

M satisfies

us
M (x) = O

(
e−kr

√
r

)
, r → ∞
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Far-Field Pattern of the Biharmonic Scattered Field

Because of the exponential decay of the evanescent part us
M and ∂nus

M , the far-field
pattern contains only information about the Helmholtz component, thus,

u∞(x̂) = u∞
H (x̂),

up to a constant depending on κ. By Rellich’s lemma and exp. decay of us
M , we

obtain

Lemma (P.Li & H.Dong, 2023)

if us ∈ C4(R2 \D) satisfies

lim
r→∞

∫
|x|=r

|us(x)|2 ds = 0,

then us
H = 0 in R2 \D. Thus,

u∞ = 0 =⇒ us
H = 0 in R2 \D.
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Reconstruction Methods

1 Iterative methods to determine D (expensive optimization; a good initial guess is
needed; only one or a few incident waves are needed; reconstructions are
reasonably good)

2 Domain decomposition methods (solve an ill-posed linear integral equation first
to reduce computational expense, then optimize)

3 Direct imaging methods (avoid optimization entirely, solve many ill-posed
integral equations, requires a lot of multistatic data but no a priori information;
partial qualitative information about the scatterer is obtained)
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Reconstruction of D via Direct Imaging Methods

Remark (Shape Reconstruction)

Direct Imaging Methods: the idea is to construct an indicator test function I that
will test whether a point z lies inside or outside the scatterer.
Benefits: can reconstruct the shape of the scatterer in a computational simple manner
with no a priori information.

Assume only the location and shape of the object is needed (e.g., looking for a
crack or cavity).

Based on model, derive an indicator test function I(z), depending on coordinates,
so that

I(z) =

{
0, z /∈ object

1, z ∈ object

I(z) must be fast to compute from the scattered or far-field data.

General Ozochiawaeze Inverse Clamped Cavity Problem



Introduction
Reconstruction Methods

Linear Sampling Method Justification
Selected Numerical Results

Ongoing Future Work

Categorizing Direct Imaging Methods

Figure: Approaches to Qualitative Imaging

‘96 Colton – Kirsch: linear sampling method, factorization (point sampling in
grid)

‘98 Ikehata: probing method (curve); ‘00 Potthast: singular source method
(curve/needle)

. . . Luke, Potthast, Sylvester, Kusiak, Ikehata: range test, no response test,
enclosure method (sets/planes)
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Results on Inverse Shape Problem for Biharmonic Plate Equation

L. Bourgeouis & A. Recoquillay (2020): recovery of clamped cavities and cavities
in a free plate with the linear sampling method with near-field measurements
(boundary measurements)
Disadvantage: uses far more multistatic data, namely scattered field and normal
derivative of scattered field for point source and dipole

Y. Chang & Y. Guo (2023): recovery of clamped cavities in a thin elastic plate
with near field measurements via the domain decomposition method
(optimization method)

I. Harris, P. Li, & H. Lee (2024): recovery and resolution analysis of clamped
cavities with the direct sampling method

A. Karageorghis & D. Lesnic (2024): method of fundamental solutions (iterative
method) for recovering clamped and free plate cavities with near field
measurements
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Uniqueness Result

Theorem (P. Li & H. Dong, 2023)

Let D1 and D2 be two cavities meeting the clamped boundary conditions, with
corresponding far-field patterns u∞

1 and u∞
2 satisfying

u∞
1 (x̂, d) = u∞

2 (x̂, d), ∀x̂, d ∈ S1.

Then D1 = D2.

This result guarantees uniqueness of the inverse cavity scattering problem with
clamped boundary conditions.

Proof of the result is based on the reciprocity relations and correspondences of
the far-field patterns with respective scattered fields generated by point sources.
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Idea Behind Linear Sampling Method

Qualitative/Sampling Scheme
Goal: want to

recover shape and location of the cavity using an indicator function based on an
integral equation solution

Sampling: Collect the far-field data u∞ and solve an ill-posed linear integral equation
for each sample point z
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Core of LSM - The Far-Field Equation

Far-Field Equation

Fgz(x̂) = Φ∞(x̂, z), Φ∞(x̂, z) = −
1

2κ2

eiπ/4

√
8κπ

e−iκx·z , gz ∈ L2(S1), z ∈ R2

Φ∞(·, z) = FF pattern of the point source Φ(·, z) centered at sampling point z

Φ(·, z) satisfies (∆2 − κ4)Φ(·, z) = (∆− κ2)(∆ + κ2)Φ(·, z) = −δ(· − z) in R2

with

Φ(x, z) =
i

8κ2

(
H1

0 (κ|x− z|) +
2i

π
K0(κ|x− z|)

)
, x ̸= z

=
1

2κ2
(ΦH(x, z)− ΦM (x, z)),

where H
(1)
0 and K0 are the Hankel functions of the first kind and MacDonald’s

function, respectively.

F is a compact operator, so the FF equation is ill-posed.

General Ozochiawaeze Inverse Clamped Cavity Problem



Introduction
Reconstruction Methods

Linear Sampling Method Justification
Selected Numerical Results

Ongoing Future Work

Approximate Solvability Condition of Far-Field Equation

Want an approximate solvability condition for the FF equation:

Problem

Approximate Solvability Condition: want to show F has dense range in L2(S1); that
is,

Range F ||·||
L2(S1) = L2(S1)

By Hahn-Banach Theorem, this is equivalent to showing the adjoint operator F∗ is
injective. By a result called the reciprocity relation, the approximate solvability
condition reduces to showing F is injective.
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Approximate Solvability and Reciprocity Relation

Lemma (Reciprocity Relation)

u∞(x̂, d) = u∞(−d,−x̂) for every x̂, d ∈ S1.

Proof uses Green’s representation formula for u∞ + exploits exp. decay of us
M . Why

is this useful?

(f,Fg)L2(S1) =

∫
S1

(∫
S1

u∞(x̂, d)g(d) ds(d)

)
ds(x̂)

=

∫
S1

(∫
S1

u∞(−d,−x̂)g(d) ds(d)

)
ds(x̂)

=
(
u∞(−d,−x̂)f(x̂)ds(x̂), g

)
L2(S1)

,

so F∗g = RFRg where (Rf)(x̂) := f(−x̂).
Approximate Solvability: Suffices to show F is injective!
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Assumption for Approximate Solvability

We want to determine when F is injective. Suppose Fg = u∞
g = 0. Then by Rellich’s

lemma + exp. decay of the modified Helmholtz component,

us
g,H(x) =

∫
S1

us
H(x, d)g(d) ds(d) = 0 in R2 \D,

with

∆us
g,M − κ2us

g,M = 0 in R2 \D, (3)

∆us
g,H + κ2us

g,H = 0 in D,

and so on the boundary ∂D:

us
g,M + vg = 0, ∂n(u

s
g,M + vg) = 0. (4)

Assume: κ2 ̸= eigenvalue of (3)–(4) to ensure vg = 0 on ∂D, so that g = 0. (Only
want trivial solution pair)
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Helpful Auxiliary Operators for Approximate Solvability

Define the Herglotz wave operator

H : L2(S1) → H3/2(∂D)×H1/2(∂D) : g 7→
(

vg
∂nvg

) ∣∣∣∣∣
∂D

,

where vg(x) =

∫
S1

eiκx·dg(d) ds(d) is the Herglotz wave function. Then

F = −GH

G : boundary data 7→ FF pattern (data-to-pattern operator)

H is the Herglotz wave operator that maps g to the superposition of plane wave
data on the boundary.

By superposition Hg induces the far-field pattern Fg
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On Auxiliary Operator G

G : H3/2(∂D)×H1/2(∂D) → L2(S1) : (h1, h2)⊤ 7→ w∞

1 w∞ = far-field pattern of the unique radiating solution w ∈ H2
loc(R

2 \D)
satisfying

∆2w − κ4w = 0 in R2 \D,

w|∂D = h1, ∂nw|∂D = h2,

lim
r=|x|→∞

√
r (∂rw − iκw) = 0, lim

r=|x|→∞

√
r (∂r∆w − iκ∆w) = 0

(5)

2 To show G is injective, we need to assume that κ2 ̸= eigenvalue of the mixed
eigenvalue problem given by the pair (p, q) = (wM , ui) satisfying

∆p− κ2p = 0 in R2 \D,

∆q + κ2q = 0 in D,

p+ q = 0, ∂n(p+ q) = 0 on ∂D,

lim
r=|x|→∞

√
r (∂rp− iκp) = 0,

(6)
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Approximate Solvability of the FF equation

The following two lemmas ensure the approximate solvability condition of the far-field
equation holds:

Lemma (G. Ozochiawaeze, 2024)

The auxiliary operator G is compact with dense range on L2(S1). Moreover, if κ2 ̸=
eigenvalue of (6), then G is injective. Finally, we have the following range
characterization of the clamped cavity D:

z ∈ D ⇐⇒ Φ∞(x̂, z) ∈ Range(G).

Lemma (G. Ozochiawaeze, 2024)

H is compact and injective. If κ2 ̸= eigenvalue of (6), then F is injective. Thus, F
has dense range in L2(S1).
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Range Characterization of the Cavity D

The linear sampling method is a direct imaging method based on the following range
characterization of the cavity D:

Lemma (Range Characterization of Clamped Cavity D)

z ∈ D if and only if Φ∞(x̂, z) ∈ Range(G).

This result follows by Rellich’s lemma and justifies the choice of indicator test function
of LSM:

I(z) :=
1

||gz ||L2(S1)
=

{
0, if z ∈ R2 \D,

> 0, if z ∈ D.

Moreover, I(z) → 0 as z → ∂D.
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Reconstruction of the Cavity D via the LSM

Theorem (The Linear Sampling Method)

Assume κ ̸= eigenvalue of the mixed eigenvalue problem (6). We have the following:

Suppose z ∈ D. Given ϵ > 0 there exists an approximate solution gz,ϵ ∈ L2(S1)
to the far-field equation such that

||Fgz,ϵ − Φ∞(·, z)||L2(S1) < ϵ.

Furthermore, ||gz,ϵ||L2(S1) is unbounded as z → ∂D.

Suppose z /∈ D. Then the approximate solution of the far-field equation gz,ϵ
satisfies

||gz,ϵ||L2(S1) is unbounded as ϵ → 0, assuming that

||Fgz,ϵ − Φ∞(·, z)||L2(S1) → 0 as ϵ → 0.
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Numerical Scheme

Construct a grid of ‘sampling points’ T in a region known to contain the cavity
D. Choose a regularization parameter α > 0 and cut-off constant c0.

For each grid point zi ∈ T , solve the regularized far-field equation
(αI + F∗F)gzi,α = F∗Φ∞(x̂, zi) (Tikhonov regularization)

Construct a reconstruction M for D where

M := {zi ∈ T : ||gzi,α||L2(S1) ≤ c0}

Choice of c0 is heuristic; resolution improves with higher wave number. If we
invert the indicator function, c0 = 0.
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Numerical Result: Recovering the Apple-Shaped Cavity

Figure: Recovering the Apple-Shaped Cavity with
κ = 2π; no noise; 30 incident and observation
directions; 250 × 250 grid

Figure: Recovering the Apple-Shaped Cavity with
κ = 2π; noise δ = 0.02; 30 incident and
observation directions; 250 × 250 grid
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Numerical Result: Recovering the Peach-Shaped Cavity

Figure: Recovering the Peach-Shaped Cavity with
κ = π; no noise; 30 incident and observation
directions; 250 × 250 grid

Figure: Recovering the Peach-Shaped Cavity with
κ = π; noise δ = 0.05; 30 incident and
observation directions; 250 × 250 grid
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Numerical Result: Recovering the Peanut-Shaped Cavity

Figure: Recovering the Peanut-Shaped Cavity
with κ = π; no noise; 30 incident and
observation directions; 250 × 250 grid

Figure: Recovering the Peanut-Shaped Cavity
with κ = 2π; no noise; 30 incident and
observation directions; 250 × 250 grid
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Numerical Result: Recovering the Peanut-Shaped Cavity

Figure: Recovering the Peanut-Shaped Cavity
with κ = π; noise δ = 0.05; 64 incident and
observation directions; 250 × 250 grid

Figure: Recovering the Peanut-Shaped Cavity
with κ = π; noise δ = 0.05; 128 incident and
observation directions; 250 × 250 grid
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Ongoing Future Work

numerical implementation of the linear sampling method for other cavities (e.g.,
free plate, simply supported plate, roller supported) based on Neumann and
mixed boundary conditions with far-field data

modification of the LSM for reconstructing cavities with a single incident plane
wave (single measurement) (i.e., will consider the extended sampling method)
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